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a b s t r a c t

Anhedonia is a core symptom of major depressive disorder (MDD), the neurobiological mechanisms of
which remain poorly understood. Despite decades of speculation regarding the role of dopamine (DA)
in anhedonic symptoms, empirical evidence has remained elusive, with frequent reports of contradic-
tory findings. In the present review, we argue that this has resulted from an underspecified definition of
anhedonia, which has failed to dissociate between consummatory and motivational aspects of reward
behavior. Given substantial preclinical evidence that DA is involved primarily in motivational aspects of
epression
opamine
eward
otivational anhedonia

onsummatory anhedonia
ecisional anhedonia

reward, we suggest that a refined definition of anhedonia that distinguishes between deficits in plea-
sure and motivation is essential for the purposes of identifying its neurobiological substrates. Moreover,
bridging the gap between preclinical and clinical models of anhedonia may require moving away from
the conceptualization of anhedonia as a steady-state, mood-like phenomena. Consequently, we intro-
duce the term “decisional anhedonia” to address the influence of anhedonia on reward decision-making.
These proposed modifications to the theoretical definition of anhedonia have implications for research,

assessment and treatment of MDD.

© 2010 Published by Elsevier Ltd.
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o the original Feighner criteria published in 1972, anhedonia has
ong been presumed as a core feature of MDD (Feighner et al.,
972). The DSM-IV-TR (American Psychiatric Association, 1994)
efines anhedonia as diminished interest or pleasure in response
o stimuli that were previously perceived as rewarding during a
re-morbid state (DSM-IV-TR). Along with depressed mood, anhe-
onia is one of two required symptoms for a diagnosis of MDD
American Psychiatric Association, 2000; World Health Organiza-
ion, 1992). Recent reports estimate that approximately 37% of
ndividuals diagnosed with MDD experience clinically significant
nhedonia (Pelizza and Ferrari, 2009). Anhedonia is a particularly
ifficult symptom to treat, as accruing evidence suggests that cur-
ent first-line pharmacotherapies (e.g., SSRIs) do not adequately
ddress motivational and reward-processing deficits in depression
APA, 2000; Dunlop and Nemeroff, 2007; McCabe et al., 2009a,b;
utt et al., 2007; Price et al., 2009; Shelton and Tomarken, 2001),
nd the presence of anhedonic symptoms is a predictor of poor
reatment response generally (Spijker et al., 2001).

In an effort to find more effective treatments for psychi-
tric symptoms, the National Institute of Mental Health has
mphasized translational research approaches to identify neu-
obiological mechanisms underlying psychiatric symptoms and
isorders (Insel, 2009), such as the development of the newly pro-
osed Research Domain Criteria (RDoC) (Insel and Cuthbert, 2009;
iller, 2010). Reward-related symptoms represent an excellent

pportunity for translational neuroscience, given the vast basic sci-
nce literature from which to draw upon (Berridge and Robinson,
003; Gold et al., 2008). However, application of this important pre-
linical work to human conditions is hampered by the enormous
eterogeneity in psychiatric disorders, and the limited phenotypic
haracterization of clinical samples in most group studies. This
s true not only for the presence or absence of specific symp-
oms within a disorder (diagnostic heterogeneity), but also for the
resence or absence of co-morbid conditions (heterogeneity of co-
orbidity), etiological pathways involved in disorders (etiological

eterogeneity), and even for definitions of symptoms (symptom
eterogeneity).

Attention to these multiple forms of heterogeneity is critical
or elucidating the neurobiological pathways involved. For exam-
le, under the DSM-IV definition of Major Depressive Episode,
hich requires the presence of 5 out of 9 possible symptoms, it

s possible for two individuals to both be diagnosed with major
epression while only sharing a single symptom of the disorder.
uch heterogeneity in how an individual meets criteria may be
oth practical and theoretically appropriate, but it may also mask

mportant associations that are related to specific symptoms, rather
han the whole diagnostic category. Similarly, co-morbidity may
bscure disorder specific, or symptom specific associations. For
nstance, while multiple studies have shown that individuals with
epression exhibit increased amygdala activation in response to
egatively valenced stimuli (Fu et al., 2004; Siegle et al., 2002, 2006,
007), newer evidence suggests that this amygdala activity may
ccur primarily in individuals with MDD and co-morbid anxiety
ymptoms (Beesdo et al., 2009). Heterogeneity in etiological factors
ay also be important. In testing the role of the hypothalamic-

ituitary-adrenal (HPA) axis in MDD, it has been demonstrated that
ndividuals with depression and early-life trauma exhibit structural
eductions in regions involved in HPA axis regulation, while indi-
iduals with depression but not early-life trauma do not (Treadway
t al., 2009b; Vythilingam et al., 2002). Group designs in MDD
esearch that ignore this type of etiological heterogeneity may con-
Please cite this article in press as: Treadway, M.T., Zald, D.H., Reco
neuroscience. Neurosci. Biobehav. Rev. (2010), doi:10.1016/j.neubiore

eal important neurobiological differences (Heim et al., 2004).
A less commonly addressed form of heterogeneity—symptom

eterogeneity—can arise from the presence of compound diagnos-
ic criteria, or criteria that may be met in multiple ways. In the
ase of anhedonia, the DSM-IV-TR states that individuals meet-
 PRESS
obehavioral Reviews xxx (2010) xxx–xxx

ing criteria “may report feeling less interest in hobbies, ‘not caring
anymore,’ or not feeling any enjoyment in activities that were pre-
viously considered pleasurable” (American Psychiatric Association,
2000, p. 349). In other words, clinical diagnosis of anhedonia does
not discriminate between a decrease in motivation and a reduc-
tion in experienced pleasure. The failure to draw such a distinction
may reflect the long-held assumption that people are motivated to
pursue the things they find pleasurable, and vice versa.

In the present review, we suggest that heterogeneity at the
level of symptom definition is at least as problematic as the
more commonly acknowledged issues of co-morbidity or etiolog-
ical variability in group samples. In making this argument, we use
anhedonia in MDD as a case study, and suggest that the distinc-
tion between the motivational and hedonic aspects of anhedonia
is critical, especially when attempting to elucidate neurobiologi-
cal pathways underlying the expression of this symptom. Indeed,
overly broad definitions may sometimes point towards spurious
relationships between symptom and substrate. When Roy Wise
first presented the highly influential dopamine deficiency hypothe-
sis of anhedonia, he argued that dopamine (DA) critically mediated
an organism’s experience of pleasure, or “yumminess”, in response
to rewarding stimuli (Wise, 1980). Consequently, it was posited
that anhedonia in mood disorders could be explained by a reduction
in DA transmission (Willner, 1983a,b,c). In the intervening quarter-
century however, only half of this original hypothesis has found
empirical support. Namely (and as described below), subsequent
research using neuroimaging, pharmacological and genetic meth-
ods in both humans and animals has provided some support for
the claim that DA function is impaired in at least a sub-population
of individuals with MDD (Dunlop and Nemeroff, 2007; Yadid and
Friedman, 2008). However, contrary to the original anhedonia
hypothesis, the conceptualization of DA as being primarily related
to pleasure has been largely abandoned (Berridge and Robinson,
2003; Salamone et al., 2007).

These two developments raise a potential problem: if alter-
ations in DA are a significant component in the pathogenesis
of MDD but are unrelated to deficits in experience of pleasure,
what is their functional and clinical consequence? In the present
review, we suggest that this problem may be resolved through a
refined definition of anhedonia, which attends more closely to the
distinction between deficits in the hedonic response to rewards
(“consummatory anhedonia”) and a diminished motivation to pur-
sue them (“motivational anhedonia”). These facets of anhedonia are
intended to roughly correspond to the reward-processing compo-
nents of ‘liking’ and ‘wanting’ proposed in the preclinical literature
(Berridge and Robinson, 1998, 2003). In addition, we suggest that
bridging the gap between preclinical and clinical models of anhe-
donia may require moving away from the conceptualization of
anhedonia as a steady-state, mood-like phenomena, and towards
a more behavioral model that emphasizes the influence of anhe-
donic symptoms on decision-making. To address this issue, we
present the concept of “decisional anhedonia”, and highlight the
neurobiological networks that may underlie impaired decision-
making in the context of reward. These distinctions have been
largely overlooked in the extant empirical literature on MDD, which
may explain why this literature is replete with inconsistent find-
ings (Forbes, 2009). We suggest that a crucial next step in the field
is to refine our assessment and diagnostic tools to better reflect the
multi-faceted nature of reward deficits in MDD.

This strategy is not entirely new, and indeed echoes decades-
old theoretical models and clinical observations. Neurobiological
nsidering anhedonia in depression: Lessons from translational
v.2010.06.006

models of personality have previously emphasized dissociations 174

between “approach” and “consumption” of rewards, with the for- 175

mer constituting a behavioral activation system. These models 176

further posited that DA is primarily linked with approach emo- 177

tions, and might therefore underlie individual differences in reward 178

dx.doi.org/10.1016/j.neubiorev.2010.06.006
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eeking behaviors and psychopathology (Cloninger, 1987; Depue
nd Collins, 1999; Depue and Iacono, 1989; Gray, 1987). Similarly,
his dissociation has been noted in the clinical literature; the psy-
hiatrist Donald Klein noted that many patients with depression
nd anhedonia appeared to enjoy rewards that were readily avail-
ble, yet complained bitterly about feeling no desire to obtain them
Klein, 1987). While these theories and observations have existed
or some time, they have yet to be integrated with the substantial
nimal literature on the neurobiology of reward processing into a
omprehensive framework.

It is the goal of this review to provide such an integrative frame-
ork. Central to our approach is the claim that symptom definitions

hould be grounded in a neurobiological context. In the sections
hat follow, we begin by summarizing the available empirical liter-
ture regarding reward-processing deficits in depression. We argue
hat the distinction between motivation and pleasure has critical
mplications for both interpreting the existing literature and for the
esign of future studies of MDD. Following this review, we summa-
ize the preclinical literature regarding the neural mechanisms of
otivational, hedonic and decisional aspects of reward, and com-

are these mechanisms to neurobiological studies of human MDD.
ased on existing preclinical and clinical data of reward process-

ng we suggest that multiple nodes involved in reward circuits are
mpacted in MDD, and that this dysfunction may underlie anhedo-
ic symptoms.

. Diagnostic and behavioral studies of anhedonia in
epression

In his original definition, Theodule Ribot described anhedonia
s the inability to experience pleasure (Ribot, 1896). However,
cross multiple domains of the social and neural sciences, it has
ecome clear that embedded within the idea of pleasure are mul-
iple constructs, including reinforcement, desire, predicted utility,
ubjective pleasure, experienced utility, remembered utility, and so
orth, each of which describes a unique aspect of reward processing.
ttention to these distinctions is important when evaluating self-
eport and laboratory studies of anhedonia and related constructs
e.g., positive affect) in depression. In this section, we summa-
ize the different ways in which anhedonia has been measured in
DD. Notable, we show that empirical work has focused heavily

n exploring hedonic experience in depression, while studies of
otivation are relatively absent.

.1. Anhedonia and the diagnosis of depression

As already noted, the DSM-IV treats anhedonia as one of two
ymptoms required for a diagnosis of MDD. However, the psycho-
etric properties of anhedonia and other symptoms of depression

ave only recently been subjected to rigorous empirical analy-
is. In 2006, the Rhode Island Methods to Improve Diagnostic
ssessment and Services (MIDAS) project published a series of
apers exploring the psychometric aspects of DSM criteria as
ssessed using a structured interview in a sample of 1523 subjects
Zimmerman et al., 2006). As part of this study, they also made
ead-to-head comparisons between current DSM-IV symptom cri-
eria and theoretical criteria, such as helplessness/hopelessness,
ack of emotional reactivity, and diminished drive (a construct sim-
lar to motivational anhedonia). This additional diminished drive
riterion is distinct from the typical Structural Clinical Interview for
Please cite this article in press as: Treadway, M.T., Zald, D.H., Reco
neuroscience. Neurosci. Biobehav. Rev. (2010), doi:10.1016/j.neubiore

SM Axis-I Disorders (SCID) assessment of anhedonia, which does
ot dissociate between motivational or consummatory aspects of
eward; in keeping with DSM-IV criteria, the SCID simply asks
atients whether they “have lost interest or pleasure in things that
hey usually enjoy”. Strikingly, diminished drive criterion had the
 PRESS
obehavioral Reviews xxx (2010) xxx–xxx 3

second highest odds-ratio for predicting a diagnosis of depression
(50.1), ranking only below sad mood (61.2) and significantly greater
than anhedonia as assessed by the SCID (29.7) (McGlinchey et al.,
2006). This finding is all the more impressive when considering
the fact that the criterion of diminished drive is handicapped in
comparison to the DSM anhedonia criteria, as only the latter bears
directly on diagnostic outcome.

2.2. Clinical assessment of anhedonia in depression

Dimensional assessment of anhedonic symptom severity has
primarily been achieved through self-report instruments. A con-
tent review of items used in the most common anhedonia measures
reveals that they unanimously emphasize the experience of plea-
sure in response to positive stimuli, with little or no attention
to diminished drive or motivation. This includes the Chapman
Anhedonia Scale (Chapman et al., 1976), the Scale of Negative
Symptoms (SANS; Andreasen, 1982), the Fawcett–Clark Pleasure
Scale (FCPS; Fawcett et al., 1983) and the Snaith–Hamilton Plea-
sure Scale (SHAPS; Snaith et al., 1995). It is also worth noting that
several of these scales were developed with a primary focus on
schizophrenia (Chapman, SANS) rather than depression. Symptom
severity instruments specific to depression often assess anhedonia
with a small number of items; a single question in the case of the 17-
item Hamilton Depression Rating Scale (Hamilton, 1960), two items
on the 21-item Beck Depression Inventory (BDI anhedonia scale;
Beck et al., 1996) and four on the 30-item Inventory of Depres-
sive Symptoms. Importantly, none of these scales have made an
explicit attempt to dissociate between pleasure and motivational
aspects of anhedonia. More recently, the Temporal Experience of
Pleasure Scale (TEPS; Gard et al., 2006) was developed to assess
anticipatory and consummatory pleasure. This scale is a promising
advance, though it is unclear whether the experience of pleasure
when anticipating rewards is an identical construct to reward moti-
vation, and its application in clinical populations will be necessary
to determine its utility for parsing clinical anhedonia.

In seeking to assess the relevance of these commonly used anhe-
donia assessment inventories, one recent study used a 10-indicator,
3-factor confirmatory factor analysis model to assess multiple
measures of depression and anhedonia in a sample of controls
and individuals with MDD. Anhedonia questionnaires included the
Chapman, FCPS, and SHAPS, as well as clinical symptom invento-
ries (BDI and Beck Anxiety Inventory; BAI). Using this approach,
they identified three latent variables reflecting hedonic capacity,
depressive symptoms and anxiety symptoms, and found that the
hedonic capacity and depression variables were only moderately
associated (factor loading = −.20) (Leventhal et al., 2006).

Finally, the Mood-Anxiety Symptoms Questionnaire (MASQ)
developed by Watson and Clark (Watson et al., 1995a,b), includes
a number of items related to lowered positive affect and interest,
some of which appear related to aspects of anhedonia. However,
these items are generally not treated separately from the larger
scales that contain them, which remain relatively heterogeneous.
Therefore, collapsing across these different forms of reward deficits
may obfuscate the results, and may contribute to weaknesses in fit-
ting a three-factor model across samples (Buckby et al., 2008; Burns
and Eidelson, 1998; Kiernan et al., 2001).

2.3. Laboratory studies of anhedonia in depression

In laboratory settings, a number of studies have examined
nsidering anhedonia in depression: Lessons from translational
v.2010.06.006

affective responses to positively valenced stimuli as a means of 297

exploring the nature of anhedonic symptoms. These studies have 298

suggested that individuals with depression generally rate positively 299

valenced stimuli as being less positive, less arousing, or less able 300

to affect their mood as compared to controls (Berenbaum, 1992; 301
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erenbaum and Oltmanns, 1992; Dunn et al., 2004; Rottenberg
t al., 2002, 2005; Sigmon and Nelson-Gray, 1992; Sloan et al.,
997, 2001; Wexler et al., 1994) although a larger number of stud-

es have reported no group differences in these ratings (Allen et
l., 1999; Dichter et al., 2004; Forbes and Dahl, 2005; Gehricke
nd Shapiro, 2000; Kaviani et al., 2004; Keedwell et al., 2005a,b;
itterschiffthaler et al., 2003; Renneberg et al., 2005; Surguladze

t al., 2005; Tremeau et al., 2005; Tsai et al., 2003).
A potential caveat to this approach is whether reductions in

ffective responsiveness to positively valenced stimuli are spe-
ific to experienced pleasure. One alternative explanation is that
ndividuals with depression simply show a global flattening that
ncompasses both positive and negative emotions. Supporting the
ffective-flattening hypothesis, a recent meta-analysis of studies
hat measured physiologic or subjective affective responses found
hat depression was associated with blunted reactivity to both
ositively and negatively valenced stimuli (Bylsma et al., 2008).
lthough it is notable that in the Bylsma analysis the effect size for
ositive stimuli is roughly double that for negative stimuli, their
esults suggest that at least part of the decline in hedonic responses
ay be due to a generalized affective blunting, rather than a specific

eficit in experienced pleasure.
The “sweet taste test” provides another approach to assessing

edonic capacity. As part of the sweet taste test, participants rate
he pleasantness of different sucrose concentrations. An advantage
f this test is that it closely mirrors animal measures of hedonic
xperience. As such, it is notable that across four separate studies
sing the sweet taste test, individuals with depression and matched
ontrols have shown no differences in reported hedonic impact
Amsterdam et al., 1987; Berlin et al., 1998; Dichter et al., 2010;
azes et al., 1994). On the surface this suggests that there is no
eficit in hedonic capacity to experience a natural reinforcer in
DD. A concern may be raised, however, as there are substan-

ial individual differences in taste sensitivity (Duffy and Bartoshuk,
000) that may make such measures insensitive to state changes

n hedonic perceptions. In summary, the literature suggests reduc-
ions in hedonic capacity in MDD, although the generalizability of
uch deficits remains unclear.

Additional laboratory studies have used reinforcement
aradigms to explore anhedonia in depression. One well-replicated
nding has been that individuals with depression fail to develop
response bias towards rewarded stimuli (Henriques et al.,

994; Pizzagalli et al., 2008, 2005). These paradigms use dis-
rimination tasks in which subjects must categorize a briefly
resented stimulus as belonging to category A or B. Importantly,
hese paradigms use a pay-off matrix so that subjects are more
ewarded for correctly guessing category A, as opposed to category
, with no punishment associated with incorrect guesses. Healthy
ontrol subjects typically develop a response bias toward the
ore rewarding option, whereas MDD patients do not. These

legant studies provide strong evidence for an insensitivity to
eward-relevant information in MDD. One limitation, however,
s whether these reinforcement deficits are driven by reduced
edonic capacity, diminished motivation, or both.

Finally, one recent study compared ratings of experienced emo-
ion in individuals with current depression, remitted depression
nd never depressed controls across conditions that involved antic-
pating and experiencing rewards and punishments (McFarland
nd Klein, 2009). Participants rated their emotions across 10
imensions in response to four experimental conditions: anticipat-

ng monetary rewards, anticipating an unpleasant sensory stimulus
Please cite this article in press as: Treadway, M.T., Zald, D.H., Reco
neuroscience. Neurosci. Biobehav. Rev. (2010), doi:10.1016/j.neubiore

cold press), no change, and avoiding an unpleasant sensory stim-
lus. No differences between the three groups were reported for
nticipating unpleasant stimuli, no change, or the avoidance of an
npleasant stimulus. In contrast, during reward anticipation, indi-
iduals with current MDD showed significantly reduced ratings of
 PRESS
obehavioral Reviews xxx (2010) xxx–xxx

positive emotions as compared to controls, and slightly reduced
ratings compared to individuals with prior depression. Although
this study did not test motivation per se, these data provide novel
evidence of a deficit in experienced emotion during reward antici-
pation in MDD.

Taken together, the reviewed evidence suggests that while diag-
nosis of anhedonia assesses both motivation and experience of
pleasure, current questionnaire and laboratory measures of anhe-
donia have largely emphasized the latter; the authors are aware
of no laboratory studies that have directly assessed motivation in
MDD. In laboratory settings, a number of studies have found evi-
dence for diminished responsiveness to positively valenced stimuli,
but the work of Bylsma et al., suggests that this may reflect a gen-
eral affective flattening. Moreover, it remains unclear how closely
related measures of affective responses to positively valenced stim-
uli are to the construct of hedonic capacity. Importantly, the lack
of group differences on the sweet taste test raise potential doubts
as to whether or not depression is associated with a specific deficit
in the capacity to feel pleasure, at least at the level of basic sensory
experience.

3. Neurobiological bases of motivational and
consummatory anhedonia

In a striking contrast to the behavioral literature, which has
largely focused on deficits in hedonic capacity (‘liking’), preclin-
ical neurobiological studies of anhedonia have primarily targeted
neural substrates involved in motivation and reinforcement (‘want-
ing’). Across a variety of studies, ‘liking’ and ‘wanting’ have been
linked to a variety of brain regions, neural circuits and neurotrans-
mitters. These include the neurotransmitter dopamine and opioid
neuropeptides, sub-cortical structures such as the basal ganglia and
striatum (particularly the nucleus accumbens (NAcc), ventral pal-
lidum (VP), ventral tegmental area (VTA), substantia nigra (SN),
amygdala and hippocampus), as well as cortical regions such as
the ventromedial prefrontal cortex (vmPFC), encompassing aspects
of orbital frontal cortex (OFC), anterior cingulate cortex (ACC) and
medial prefrontal cortex (mPFC). In this section we review the neu-
ral circuitry involved in both ‘liking’ and ‘wanting’ as well as the
evidence to support its role in consummatory and motivational
aspects of anhedonia in MDD.

3.1. Reward ‘wanting’: dopamine and striatal circuitry

Located within the pars compacta of the substantia nigra (SNpc)
and VTA, DA neurons give rise to three ascending pathways: the
nigrostriatal, mesolimbic and mesocortical pathways, as depicted
in Fig. 1. The nigrostriatal pathway terminating in the dorsal cau-
date and putamen is heavily implicated in motor control, and habit
learning. The mesolimbic pathway terminates in the ventral stria-
tum (including the NAcc), the amygdala and hippocampus, and is
most closely associated with associative learning, reward moti-
vation and reinforcement. The mesocortical pathway projects to
cortical regions, including dense innervation of the ACC, with addi-
tional terminals in orbital frontal cortex, medial prefrontal cortex
and the insula. This third pathway is strongly associated with work-
ing memory, attention, and inhibitory control.

Midbrain DA neurons exhibit two distinct modes of firing,
referred to as “tonic” and “phasic” (Grace and Bunney, 1984).
Tonic DA activity refers to steady-state firing generated by intrinsic
pacemaker-like characteristics of DA neurons. Phasic activity—also
nsidering anhedonia in depression: Lessons from translational
v.2010.06.006

known as “burst firing”—involves a rapid series of action potentials 425

that induce a rapid rise in extracellular DA at terminal projection 426

targets. As additionally outlined in Fig. 1, initiation of phasic activ- 427

ity requires excitatory signals from a variety of areas, including the 428

prefrontal cortex, pedunculopontine tegmentum (PPt) and subtha- 429
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Fig. 1. Schematic illustration of dopamine projection pathways and circuitry regu-
lating DA release in the human brain. DA firing rates are maintained at tonic levels
in part due to steady-state inhibitory firing from the ventral pallidum. Excitatory
projections from prefrontal cortex project, amygdala and hippocampus synapse on
striatal targets, including the nucleus accumbens. The nucleus accumbens sends
GABAergic projections to the ventral pallidum, suppressing VP inhibition of VTA,
thereby facilitating phasic burst firing of VTA DA neurons. Note: Placement of struc-
ture labels is approximate. Amyg, amygdala; Caud, caudate; DA, dopamine; GABA,
G
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Fig. 2. Schematic illustration of dopamine synapse on striatal medium spiny neu-
ron. DA stimulation of D1-like receptors increases the activity of adenylate cyclase,
while stimulation of D2-like receptors suppresses adenylate cyclase activity. DA may
be removed from the synapse either by reuptake via the DA transporter or degra-
dation by monoamine oxidase, resulting in the DA metabolite of homovanillic acid.
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amic nucleus (Floresco et al., 2003; Futami et al., 1995; Smith and
race, 1992) as well as suppression of steady-state inhibitory sig-
als arising from the NAcc and ventral pallidum (VP) (Sesack and
race, 2010).

A key function of DA is to modulate the sensitivity of post-
ynaptic neurons to other types of input. In the striatum—the
argest recipient of DA projections—DA may modulate the sensi-
ivity of medium spiny neurons (MSN) to excitatory glutamatergic
rojections from prefrontal and limbic regions. As shown in Fig. 2,
A acts primarily on one of 5 post-synaptic G-protein coupled

eceptors, labeled D1–D5 (Cooper et al., 2003). These receptors are
rouped into two “families”, described as D1-like (including D1
nd D5 receptors) and D2-like (D2, D3 and D4 receptors). Upon
eceptor stimulation, both D1-like and D2-like receptors inter-
ct with adenylate cyclase (AC) (Surmeier et al., 2007). D1-like
eceptor stimulation increases AC activity through coupling with
ither G alpha S or (G�-s) G alpha olfactory (G�-olf), which results
n increased activation of protein kinase A (PKA) and subsequent
hosphorylation of various intracellular targets. Recent evidence
uggests that this intracellular pathway can result in increased
esponsiveness of MSNs to sustained release of glutamate, gen-
rating “up-states” (Surmeier et al., 2007). In contrast, D2-like
eceptor binding results in decreased AC activity, thereby reduc-
ng the responsiveness of MSNs (“down states”) (Hernandez-Lopez
t al., 2000). Of note, due to their higher affinity for DA as well
s their more centralized location on the post-synaptic membrane,
2-like receptors are often stimulated by tonic levels of DA release,
hereas D1-like receptors are stimulated primarily during phasic
A release (Goto et al., 2007).

Initial evidence for the role of DA in mediating reward ‘want-
ng’ comes from the fact that 6-OHDA lesions of NAcc DA synapses
o not impair hedonic liking expressions in rats (Berridge and
Please cite this article in press as: Treadway, M.T., Zald, D.H., Reco
neuroscience. Neurosci. Biobehav. Rev. (2010), doi:10.1016/j.neubiore

obinson, 1998). Similar effects have been found following the
ystemic administration of neuroleptic drugs—acting primarily
n DAergic sites—which also failed to alter liking responses
Kaczmarek and Kiefer, 2000; Parker and Leeb, 1994; Pecina et
oxidase inhibitors block MAO activity and pramipexole inhibits DA autoreceptors.
AC, adenylate cyclase; DAT, DA transporter; DOPA, 3,4-dihydroxyphenylalanine;
HVA, homovanillic acid; MAO, monoamine oxidase; MAOI, monoamine oxidase
inhibitor; MSN, medium spiny neuron; TH, tyrosine hydroxylase.

al., 1997). Finally, DA burst firing—which commonly occurs in
response to unexpected rewards—ceases after the previously unex-
pected reward becomes predicted, despite the fact that the hedonic
value of the predicted reward is presumably intact (Berridge, 2007;
Schultz, 2006; Schultz et al., 1997). Even more striking evidence
comes from studies using mice that have been genetically engi-
neered to be incapable of endogenous DA synthesis without the
aid of daily l-DOPA administration (Zhou and Palmiter, 1995).
Suspension of these l-DOPA administrations for a single day can
result in the near-total depletion of DA in the brain. However,
even these highly DA-depleted mice still favor sucrose–water over
regular water, and demonstrated a morphine-induced conditioned
place-preference (Cannon and Palmiter, 2003; Hnasko et al., 2005).
Finally, studies have found that increasing DA shows no effect on
liking behavior. Genetically modified mice that exhibit a knock-
down of the Dopamine Transporter (DAT) gene, thereby resulting
in increased extracellular DA, showed no alterations in liking
responses (Pecina et al., 1997). In sum, these findings provide clear
evidence that DA function is neither necessary nor sufficient for
hedonic liking responses to occur.

A second line of work has sought to demonstrate a pivotal role
for DA in the motivation to pursue rewards, as indexed by over-
coming response costs (Salamone et al., 2007). As shown in Fig. 3,
Salamone and colleagues developed experimental paradigms that
evaluate an animal’s willingness to work for a given reward. These
paradigms, described herein as “effort-based decision-making”
paradigms, include concurrent-choice tasks and progressive ratio
tasks (Assadi et al., 2009). Initial studies employed a T-maze design,
in which rats enter a T-shaped maze and made a choice between
one arm of the maze containing a readily available food reward
(Low-Cost/Low Reward, “LC/LR”), and another arm containing a
larger food reward that was available only after climbing a barrier
(High-Cost/High-Reward, “HC/HR”). Using this choice-paradigm, it
nsidering anhedonia in depression: Lessons from translational
v.2010.06.006

rats with NAcc DA lesions or blockade of striatal D2 receptors 500

show increased preference for the LC/LR option (Correa et al., 2002; 501

Cousins et al., 1996; Cousins and Salamone, 1994; Denk et al., 2005; 502

Salamone et al., 2007). 503
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Fig. 3. Schematic diagram of effort-based decision-making paradigms. Animals may
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hoose between a smaller food reward that is readily available (LC/LR option) or a
reater food reward that can only be obtained after climbing over a barrier (HC/HR
ption). Control rats choose the HC/HR option approximately 90% of the time, while
A-depleted rats show a strong preference for the LC/LR option.

Convergent evidence was found during an operant response
oncurrent-choice task, where rats must choose between eating
reely available, unpalatable “lab chow” (LC/LR option) or pressing
lever several times in order to receive a preferred food reward

HC/HR option). As with the T-maze paradigm, blockade of NAcc
A through either lesions of DA projection terminals with 6-OHDA
ill result in a reduced preference for the HR choice (Aberman

nd Salamone, 1999; Correa et al., 2002; Cousins and Salamone,
996; Hamill et al., 1999; Salamone et al., 1991, 2005). Additional
tudies have found that global blockade of DA using selective D1
r D2 receptor antagonists may also impair effort-based decision-
aking (Bardgett et al., 2009; Walton et al., 2009), though selective

mpairment of phasic DA release does not (Zweifel et al., 2009).
A key aspect of these paradigms for translational psychopathol-

gy research is the fact that control animals choose HC/HR options
pproximately 90% of the time, thereby suggesting that exper-
mentally induced increases in LC/LR choices can reasonably be
nterpreted as pathological in nature, rather than a minor shift in
ormative preferences. In addition, multiple control experiments
ave been performed to rule out possible confounding factors,
uch as alterations in the ability to engage in voluntary move-
ent, or diminished understanding of reward contingencies. For

xample, in conditions where reward is removed entirely from the
C/LR option, or the paradigm is modified so that both LC/LR and
C/HR options require equal effort, NAcc DA-depleted rats cease

o differ from control animals (Denk et al., 2005; Salamone, 1996).
dditionally, one recent study confirmed that NAcc DA influences
ffort-expenditure preferences even when controlling for differ-
nces in reward delay, as HC/HR options often require extra time
o complete (Floresco et al., 2008). These additional studies suggest
hat experimentally induced preferences for LC/LR options are: (1)
ufficiently abnormal to be construed as a pathological deficit in
otivation, and (2) do not result from impaired understanding of

hoice contingencies, physical inability, or temporal delay.
Taken together, these findings provide strong evidence for the

ole in DA as encoding the motivational aspects of reward process-
ng, while being relatively uninvolved in the hedonic experience. In
tating this, we do not intend to suggest that alterations in DA are
he only way to produce motivational deficits (see Section 4), but
ather that alterations in DA functioning are sufficient to produce
uch deficits.

.2. Motivational anhedonia: dopamine and basal ganglia
Please cite this article in press as: Treadway, M.T., Zald, D.H., Reco
neuroscience. Neurosci. Biobehav. Rev. (2010), doi:10.1016/j.neubiore

unction in depression

Given that DA has been theorized to play a role in MDD since
t least the 1970s, it may seem surprising that it has received rela-
ively less attention than either norepinephrine (NE), or serotonin
 PRESS
obehavioral Reviews xxx (2010) xxx–xxx

(5HT). This in part reflects the known serotonergic and noradren-
ergic properties of many antidepressants. The focus on 5HT and
NE further intensified with the discovery in the 1980s that tri-
cyclic antidepressant medications (TCAs) act primarily by blocking
reuptake of NE and 5HT, and the subsequent success of SSRIs ther-
apies in treating MDD. However, as Dunlop and Nemeroff have
observed, the well-documented temporal delay between reuptake
inhibition and clinical effects suggests that the therapeutic action of
these drugs may involve downstream mechanisms, including alter-
ations in DA function (Dunlop and Nemeroff, 2007). Additionally,
it is worth noting that these medications may be more effective in
treating the anxiogenic aspects of depression, as suggested by their
efficacy in the treatment of anxiety disorders (Davis et al., 2006;
Ninan, 2003; Sheehan and Mao, 2003; Vaswani et al., 2003). A DA
role in anhedonia may also explain why 5HT and/or NE antidepres-
sant medications do not adequately address this symptom (Dunlop
and Nemeroff, 2007; Shelton and Tomarken, 2001).

Another challenge to uncovering the role of DA in MDD is that
many studies have employed group designs with heterogeneous
patient samples that are not limited to patients with anhedonic
symptoms, much less specific motivational and consummatory
subtypes. Such heterogeneity may mask group differences in DA
function, as well as specific within-group associations between DA
and anhedonia. This problem is worsened by the fact that assess-
ment instruments for anhedonia are heavily weighted towards
pleasure responses, which are unlikely to be strongly associ-
ated with DA function. Nevertheless, multiple studies support the
hypothesis that there are abnormalities in DA in MDD, which is a
desiderata if DA plays a specific role in one or more of the symptoms
of the disorder.

Initial data supporting a role of DA in MDD comes from stud-
ies of DA turnover, which observed that individuals with MDD
have decreased cerebrospinal fluid (CSF) levels of homovanillic acid
(HVA), the primary metabolite of DA (Berger et al., 1980; Lambert
et al., 2000; van Praag et al., 1973; Willner, 1983a). These studies
suggest the presence of lowered basal DAergic tone in MDD. Addi-
tionally, pharmacological interventions that block or deplete DA
can induce or deepen depressive symptoms in currently depressed
or remitted individuals (Bremner et al., 2003; Hasler et al., 2008;
Ruhe et al., 2007), further implicating DA dysfunction in MDD.

In animal models of depression, several lines of evidence also
support the role of DA dysfunction. The Flinders sensitive line (FSL),
a genetic animal model of MDD, exhibit reduced basal concentra-
tions of DA in the NAcc and slower rates of DA release in the NAcc
as compared to Sprague–Dawley (SD) rats (Zangen et al., 2001).
One contributing cause of reduced extracellular DA concentrations
in DA neuron terminal regions is altered firing patterns of mid-
brain DA neurons themselves. Consistent with this explanation, FSL
rats have been observed to exhibit marked impairment in phasic
burst firing (Friedman et al., 2007) (for a review, see Yadid and
Friedman, 2008). Another animal model of depression that impli-
cates DA function is the post-psychostimulant withdrawal model
(Barr and Markou, 2005; Barr et al., 2002). This model is particu-
larly relevant for research on DA in MDD, as it produces a significant
number of symptoms associated with MDD (Markou et al., 1998)
and results from direct manipulation of the DA system. Consistent
with effort-expenditure deficits observed by Salamone and col-
leagues following NAcc DA blockade, psychostimulant withdrawal
has been shown to reduce both NAcc extracellular DA levels (Weiss
et al., 1992) and effort-expenditure for sucrose rewards during a
progressive ratio task (Barr and Phillips, 1999).
nsidering anhedonia in depression: Lessons from translational
v.2010.06.006

DA-acting drugs, particularly D2 agonists, have antidepressant 611

properties in animal models of depression (for a review see Gershon 612

et al., 2007). Indeed, a large number of studies have demonstrated 613

that chronic administration of various classes of antidepressant 614

medication show a common effect of increasing D2-like recep- 615

dx.doi.org/10.1016/j.neubiorev.2010.06.006


 INN

and Bi

t616

r617

e618

m619

t620

s621

t622

b623

r624

r625

b626

s627

u628

i629

e630

e631

632

v633

s634

a635

S636

a637

s638

a639

p640

(641

2642

643

s644

1645

f646

d647

n648

2649

P650

2651

b652

653

p654

c655

(656

(657

L658

t659

i660

t661

M662

m663

t664

w665

d666

a667

M668

m669

m670

671

m672

b673

p674

p675

(676

w677

r678

s679

n680

n681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742
ARTICLEG Model
BR 1328 1–19

M.T. Treadway, D.H. Zald / Neuroscience

or binding or sensitivity in the NAcc, and increased psychomotor
esponses to psychostimulants (D’Aquila et al., 2000; Gershon
t al., 2007). Such effects are observed following chronic treat-
ent with both tricyclic antidepressants and SSRIs, even though

he acute effects of these agents are primarily mediated through
erotonergic and noradrenergic mechanisms. Notably, however,
he antidepressant effects of these agents can be blocked entirely
y D2-like receptor antagonists. Finally, the selective serotonin-
euptake enhancer (SSRE) tianeptine has been shown to have
obust antidepressant properties, a finding contrary to what would
e expected if MDD were associated with a specific deficit in 5HT
ignaling (Kasper and McEwen, 2008). While the mechanisms that
nderlie the antidepressant properties of tianeptine are unclear, it

s noteworthy that this compound has been shown to increase NAcc
xtracellular DA levels as well as DA turnover in rodents (Invernizzi
t al., 1992).

In humans, pharmacological enhancement of DA signaling pro-
ides at least temporary antidepressant effects, and has been
een with DA agonists such as bromocriptine, piribedil, ropinirole
nd pramipexole (Bouras and Bridges, 1982; Cassano et al., 2005;
hopsin and Gershon, 1978; Sitland-Marken et al., 1990; Vale et
l., 1971; Waehrens and Gerlach, 1981). DAT inhibitors nomifen-
ine (Kapur and Mann, 1992), methylphenidate (El-Mallakh, 2000),
mineptine and bupropion also exhibit varying degrees of antide-
ressant effects, further highlighting the possible role DA in MDD
see Section 5 for further review) (Kapur and Mann, 1992; Stahl,
000).

Human neuroimaging studies of DA synthesis capacity have
hown reduced l-DOPA uptake in MDD (Agren and Reibring,
994). Moreover, studies exploring different sub-groups have
ound that l-DOPA alterations in the striatum are present in
epressed individuals with flat affect or psychomotor slowing, but
ot depressed individuals without these symptoms (Bragulat et al.,
007; Martinot et al., 2001). Patients with reduced DA synthesis in
arkinson’s disease also show increased rates of MDD (Koerts et al.,
007). These data suggest that reduced DA synthesis capacity may
e linked to specific symptoms in MDD.

Additional evidence of altered DA function in MDD comes from
ositron emission tomography (PET) and single photon emission
omputed tomography (SPECT) imaging of the DA transporter
DAT), where depression has been associated with both lower
Meyer et al., 2001) and higher (Amsterdam and Newberg, 2007;
aasonen-Balk et al., 1999; Yang et al., 2008) DAT binding poten-
ial in the striatum. Of note, however, the one study that restricted
ts MDD patient sample to individuals with anhedonic symp-
oms reported decreased DAT binding (Sarchiapone et al., 2006).

onoamine oxidase A, a metabolizing enzyme of DA and other
onoamines has been shown to be elevated in MDD across mul-

iple brain regions, suggesting one possible mechanism through
hich observed decreases in monoamine transmission may occur
uring a depressive episode (Meyer et al., 2006). Heightened
ctivity of MAOA in MDD may partially explain the efficacy of
AO inhibitors, which likely lead to the increased availability of
onoamines—including DA—by returning MAOA activity to nor-
ative levels.
Studies of DA receptor availability in MDD have to date produced

ixed results. In some cases, increased striatal D2/D3 receptor
inding has been shown to occur in heterogeneous depressed sam-
les (D’Haenen and Bossuyt, 1994; Shah et al., 1997), as well as in
atient samples with specific symptoms of psychomotor slowing
Meyer et al., 2006). This increase in D2/D3 receptor availability
Please cite this article in press as: Treadway, M.T., Zald, D.H., Reco
neuroscience. Neurosci. Biobehav. Rev. (2010), doi:10.1016/j.neubiore

ould appear to contradict animal data in which antidepressant
esponses are associated with increased D2-like binding in the
triatum. The source of this discrepancy is unclear, but it may be
oted that the patients in human studies were not medication
aïve. Other studies using medication-naïve or medication-free
 PRESS
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patients have failed to identify group differences in striatal recep-
tor binding (Hirvonen et al., 2008; Parsey et al., 2001), while one
additional small study showed variable changes in D2-like bind-
ing following treatment with SSRIs, with those showing increased
binding showing more clinical improvement than those who did
not (Klimke et al., 1999). Taken together, these studies suggest a
possible role of D2-like receptors in downstream effects of antide-
pressant treatment. However, the precise nature of the effect and
how alterations in D2-like receptor availability may relate to DA
function as a whole remains unclear. Moreover the use of heteroge-
neous samples, and limited exploration of specific symptoms, has
precluded examination of specific relationships between D2-like
function and motivational anhedonia.

As for D1-like receptors, a recent study of D1 receptors using
PET-[11C]NNC-112 found reduced D1-like receptor binding in the
striatum bilaterally in a sample of individuals with MDD (Cannon
et al., 2009). Anhedonia as assessed by a subscale of the IDS-C was
not correlated with change in binding potential in the MDD group.
However, as with other commonly used assessments of anhe-
donia, the anhedonia subscale from the Inventory of Depressive
Symptoms-Clinician-rated primarily emphasizes consummatory,
rather than motivational aspects.

It is additionally worth noting that a proposed role for DA dys-
function in the pathophysiology of MDD is consistent with current
etiological models that highlight interactions between genetic risk
factors and stressful life events in the onset, maintenance and
relapse of MDD (Caspi et al., 2003; Hammen, 2005; Kendler et al.,
1999; Kessler, 1997). Genetic studies have identified several poly-
morphisms related to DAergic function that increase risk for the
development of depression. The most reliable of these findings is
allelic variations in the DRD4 gene (Lopez Leon et al., 2005) and D3
receptor gene in both unipolar and bipolar depression (Chiaroni et
al., 2000; Dikeos et al., 1999). Additionally, the effects of chronic
and acute stress are well known to have significant consequences
on the DA system. Stress has been shown to increase glucocorti-
coid signaling (Holsboer, 2000), precipitate neuronal degeneration
in the hippocampus (Sapolsky, 2000) and medial prefrontal cor-
tex (McEwen, 2005; Radley et al., 2006), decrease the availability
of brain-derived neurotrophic factor (BDNF) (Duman, 2009), and
increase levels of pro-inflammatory cytokines in the brain (Dowlati
et al., 2010; Maier and Watkins, 1998). Importantly, all of these
modulations have direct influence on DA function. Glucocorticoids
modulate firing of DA neurons (Piazza et al., 1996a,b), and regions
that suffer glucocorticoid-mediated atrophy are key regulators of
mesolimbic and mesocortical DA projection pathways (Arnsten,
2009; Lisman and Grace, 2005). BDNF has been shown to regu-
late VTA DA neurons (Conner et al., 1997), and alterations in BDNF
can influence mesolimbic DA responses to reward and resiliency to
stress (Berton et al., 2006; Cordeira et al., 2010). Finally, increases in
pro-inflammatory cytokines can impact both the metabolism and
synthesis of DA (Anisman et al., 2008) so as to result in reduced DA
availability.

Taken together, the above studies provide evidence that (1)
MDD is associated with compromised DA function, (2) manipula-
tions of the DA system contribute to the actions of antidepressants
and (3) alterations of DA function are often a downstream conse-
quence of genetic and environmental risk factors, such as exposure
to stress. These positive findings are qualified by the presence of
null findings, as well as the difficulty in interpretation associated
with some of the studies. Notably, some of the findings appear spe-
cific to sub-populations of depressed individuals defined by the
nsidering anhedonia in depression: Lessons from translational
v.2010.06.006

presence or absence of specific symptoms. This observation is con- 743

sistent with the central claim that rigorous phenotypic description 744

is crucial for reliable results with biological measures. 745

As previously noted, the DA system is only one aspect of the 746

reward circuit involved in motivation. The striatum, particularly 747
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ts ventral aspects, is also heavily implicated in reward motiva-
ion, and has exhibited functional and structural abnormalities in
atients with MDD. Structural MRI studies have reported reduced
rey-matter volume within regions of the striatum (Kim et al.,
008; Matsuo et al., 2008; Pizzagalli et al., 2009; Wacker et al.,
009). Functional MRI studies have revealed diminished responses
o receipt of reward (McCabe et al., 2009a,b; Pizzagalli et al., 2009;
moski et al., 2009; Wacker et al., 2009), to anticipation of reward
Forbes et al., 2009; Smoski et al., 2009), exposure to DA-releasing
gents (Tremblay et al., 2005) and to reward prediction errors
Kumar et al., 2008; Steele et al., 2007). It is also of note that MDD
as been associated with a failure to develop a reward-dependent
esponse bias (Pizzagalli et al., 2008), a phenomenon that has been
irectly linked to striatal neuron function (Lauwereyns et al., 2002).

These findings provide strong evidence that structural and func-
ional changes in the striatum are associated with depression, but
urther interpretation is difficult as most of the differences in neu-
al activity occur in the absence of between-group differences in
ehavior. Additionally, only a small number of studies have sought
o dissociate anticipatory/motivational and consummatory aspects
f reward processing; these studies found mixed evidence for
ltered neural responses during reward anticipation and receipt.
sing the Monetary Incentive Delay (MID) task, a well-validated

eward-system probe that discriminates between anticipatory
nd consummatory aspects of reward, two groups failed to find
roup differences during reward anticipation (Knutson et al., 2008;
izzagalli et al., 2009). This is contrary to what would be expected
iven that reward anticipation is most closely linked to DA func-
ion. Further, in healthy controls, the anticipation phase of the MID
as been found to correlate with striatal DA release induced by
mphetamine (Buckholtz et al., 2010) and extended performance
f the MID itself (Schott et al., 2008). Do these findings challenge
he hypothesis that altered DA function may mediate motivational
nhedonia in MDD?

Several reasons suggest that while MID is a useful assay of
otivation in healthy subjects, this interpretation may be less

traightforward for individuals with MDD. First, studies using stim-
lation paradigms other than the MID have found group differences

n striatal activation during reward anticipation (Forbes et al., 2009;
moski et al., 2009), thereby suggesting the possibility that design
lements unique to the MID may be at play. One issue is that the
eriod of “reward anticipation” in the MID is a period of preparation
o make a speeded-manual response. This is in contrast to the gam-
ling tasks used by Smoski and colleagues or Forbes and colleagues,
or which the anticipation period is passive and immediately pre-
edes the potential reward as opposed to preceding a response.
nterestingly, a recent study by Bar-Haim and colleagues used a

odified version of the MID where for some trials reward anticipa-
ion was passive, while in others a speeded response was required.
n a sample of adolescents with a history of inhibited tempera-

ent, Bar-Haim et al. reported a group by anticipation condition
nteraction in the ventral striatum, such that individuals with a
istory of inhibited temperament showed increased responses dur-

ng active—but not passive—anticipation (Bar-Haim et al., 2009).
his finding suggests that active reward anticipation may actually
ncrease ventral striatal responses in anxiety-prone individuals,
erhaps reflecting a DA stress response. After incorporating these
dditional results, it would appear that the anticipatory phase of the
ID may not be a pure measure of appetitive motivation, and may

apture heightened motor-preparatory responses in populations
ith anxiety symptoms, whose motivation may result less from
Please cite this article in press as: Treadway, M.T., Zald, D.H., Reco
neuroscience. Neurosci. Biobehav. Rev. (2010), doi:10.1016/j.neubiore

eward wanting than from a hypersensitivity to perceived failure
punishment motivation). Given the enhanced negative affectivity
ssociated with MDD (Watson et al., 1995a), this could mask impor-
ant group differences in reward-related ventral striatal activity. If
his interpretation is correct than it may be necessary to devise
 PRESS
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probes that tap appetitive reward in the absence of potential con-
founds from other motivational features.

3.3. Reward “liking”: opioids, amygdala and ventromedial
prefrontal cortex

The primary neurochemicals involved in pleasurable hedo-
nic experience are endogenous opioids. Endogenous opioids
include multiple families of neuropeptides, including endorphins,
enkephalins, dynorphins and orphanin FG as well as their various
receptor subtypes (�, �, � and ORL 1) (Cooper et al., 2003). Func-
tionally these peptides have been shown to play a significant role
in the subjective experience of euphoria. Opioid receptors (�, �, �)
are widely expressed in the ventral striatum (particularly the shell
of the NAcc). Stimulation of these receptors is believed to under-
lie hedonic responses to food, and possibly other natural rewards
(Pecina et al., 2006). In humans, �-opioid receptors in both the
striatum and medial prefrontal cortex have been closely linked to
affective responses (Liberzon et al., 2002; Zubieta et al., 2001, 2003,
2005).

Accruing evidence suggests that opioid systems play a piv-
otal role in reward ‘liking’. To demonstrate this, researchers have
shown that opioids are both necessary and sufficient for affec-
tive facial responses following the receipt of natural rewards (e.g.,
sucrose) (Pecina et al., 2006). Regions that result in increased
“liking” responses following microinjection of �-opioid receptor
agonists have been dubbed “hedonic hotspots”. Two primary sties
of these hotspots have been identified: the shell of the NAcc (Pecina
and Berridge, 2005) and the VP (Smith et al., 2009). These two
regions (with the possibility of others that have yet to be identified)
are proposed to be the primary causal centers of affective pleasure
responses.

Opioid function has also been proposed as the primary mecha-
nism through which DAergic drugs of abuse, such as amphetamine
and cocaine, induce subjective euphoria. Specifically, it has been
shown that co-administration of opioid antagonists significantly
attenuate the reported subjective effects of psychostimulants
(Jayaram-Lindstrom et al., 2004). Further, co-administration of opi-
oid agonists and psychostimulants result in significantly greater
reported euphoria than psychostimulant administration alone
(Mello et al., 2005). These data suggest that despite apparent cor-
relations between stimulant-induced DA release and subjective
euphoria (Drevets et al., 2001), this result is mediated by down-
stream effects on opioid function, and is unlikely to be a direct
consequence of increased extracellular DA (Volkow et al., 1996).

In addition to these two subcortical “hedonic hotspots” that
respond to opioid stimulation, multiple subregions of ventrome-
dial prefrontal cortex (vmPFC) are also involved in processing the
hedonic impact of rewarding stimuli, including the orbital frontal
cortex (OFC) and the anterior cingulate cortex (ACC). The OFC pro-
vides substantial input into the ventral striatum (Zald and Kim,
1996a,b). Of primary importance for reward processing, the OFC
has been shown to play a role in stimulus evaluation, and the
association of stimuli with rewards (Zald and Kim, 1996a). Single-
neuron recordings of the OFC suggest that the OFC may code the
relative value of a reward (Tremblay and Schultz, 1999), although
some coding also appears invariant to the presence or absence
of other rewards (Padoa-Schioppa and Assad, 2008). Activations
in the OFC are present both during the anticipation or prediction
phase of a reward, and often precedes reward-expectancy activity
in the striatum (Schoenbaum et al., 2003, 2004; Schoenbaum and
nsidering anhedonia in depression: Lessons from translational
v.2010.06.006

Setlow, 2003; Setlow et al., 2003). OFC activations are also com- 873

mon during reward receipt and have been suggested to encode 874

the affective value (and valence) of reward receipt (Everitt and 875

Robbins, 2005; Kringelbach et al., 2004; O’Doherty et al., 2002; Rolls 876

and Xiang, 2005). Moreover, some studies suggest that the magni- 877
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ude of OFC responses is monotonically related to the magnitude
f a given reward (Gottfried et al., 2006). Similarly, the rostral ACC
lso plays a role in encoding the receipt of reward (Knutson et al.,
001, 2005; Sanfey et al., 2003). More unique to the ACC is the spe-
ialized role of making reward choices, particularly during more
omplex decisions that require the integration of both cost and ben-
fits (Kennerley et al., 2006, 2009; Rushworth and Behrens, 2008;
alton et al., 2006).
Finally, the amygdala also plays a role in evaluation of posi-

ive stimuli (Balleine and Killcross, 2006; Baxter and Murray, 2002;
urray, 2007). Studies of amygdala lesions in rats show that dam-

ge to this structure may impair approach behavior (Everitt et al.,
003; Hiroi and White, 1991). In particular, studies have demon-
trated a role for the amygdala in reinforcer evaluation. Amygdala
esions in monkeys significantly impair the animal’s ability to select
n object based on the current value of a food reward (Baxter and
urray, 2002).

.4. Consummatory anhedonia: opioid, ventromedial prefrontal
ortex and amygdala function in depression

Initial interest in the possibility that depression might reflect
pioid deficiency began in the early 1980s, when two studies
eported a temporary remission of depressive symptoms follow-
ng injections of �-endorphin, a non-selective endogenous opioid
eceptor agonist (Catlin et al., 1982; Pickar et al., 1981). How-
ver, the ensuing two decades have largely produced equivocal
ndings (see Hegadoren et al., 2009 for a review). Despite their
lear role in mediating hedonic responses, research on the role of
pioids in the pathophysiology of depression has focused primar-
ly on the relationships between depression, stress and analgesic
esponses. Interestingly, psychological pain has been suggested to
nduce release of endogenous opioids. Consistent with this possi-
ility, Kennedy et al. report increased �-opioid activity in the ACC

n response to a prolonged sadness induction paradigm in women
ith MDD (Kennedy et al., 2006). However, to date no studies
ave specifically evaluated opioid systems in reward liking or other
spects of reward processing in MDD.

In MDD, both OFC and ACC have shown a variety of alterations
n gross morphology, neuronal structure, function, connectivity and
eurochemistry (Botteron et al., 2002; Caetano et al., 2006; Chana
t al., 2003; Coryell et al., 2005; Cotter et al., 2001; Drevets et al.,
002; Fitzgerald et al., 2008; Hastings et al., 2004; Koolschijn et al.,
009; Manji et al., 2001; Mayberg et al., 1997, 1999; Ongur et al.,
998; Treadway et al., 2009b; Yucel et al., 2008, 2009). In studies of
onetary reward processing, altered dorsal ACC and paracingulate

ctivation has been observed in depressed patients when compared
o controls (Knutson et al., 2008; Smoski et al., 2009). The most
eplicated finding in PFC processing of rewarding stimuli in MDD
as been increased activity in rostral ACC and surrounding vmPFC

n response to positively valenced affective stimuli in MDD as com-
ared to controls (Keedwell et al., 2005a,b; Mitterschiffthaler et al.,
003).

In contrast, amygdala responses to positive stimuli are often
lunted in MDD. Beesdo et al. (2009), found reduced amygdala
esponses when passively viewing happy facial expressions in indi-
iduals with MDD as compared to control subjects or individuals
ith anxiety disorders. In the same study, both the MDD and anxi-

ty groups showed increased activation of the amygdala relative to
ealthy controls when viewing fear faces. A second study using a

ongitudinal design reported that successful treatment with citalo-
Please cite this article in press as: Treadway, M.T., Zald, D.H., Reco
neuroscience. Neurosci. Biobehav. Rev. (2010), doi:10.1016/j.neubiore

ram increased amygdala responses to happy faces (Norbury et al.,
009). Given the clear role of the amygdala in modulating striatal
esponses to rewarding stimuli, the possibility of hyporesponsiv-
ty in this region may underline some of the reported deficits in
eward processing. However, as few imaging studies have directly
 PRESS
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tested this hypothesis, further research will be required before this
hypothesis may be evaluated.

4. Wanting, liking, choosing: the case for decisional
anhedonia

Up to this point, we have considered anhedonia as a steady-
state, mood-like phenomenon, in which individuals exhibit a
general tendency to feel unmotivated or lack experienced plea-
sure. However, this conceptualization presents limitations when
attempting to link anhedonic symptoms to underlying neurobio-
logical mechanisms, as preclinical neurobiological studies typically
examine behavior within a significantly narrower temporal win-
dow than is captured by self-report measures in humans. Indeed,
preclinical studies of reward processing almost universally rely
on aggregating discrete decisions, rather than more general tem-
porally extended measures. This emphasis on decision-making in
the animal literature is not necessarily at odds with a steady-state
conceptualization. For example, one could describe a motivational
anhedonia as either a general feeling that it is not worth getting out
of bed, or a string of finite choices between staying in bed and some
other activity in which the patient consistently chooses the former.
From this perspective, the clinical phenomenon of anhedonia can
be seen to emerge from a succession of individual decisions.

Using the preclinical literature’s focus on decision-making as a
guide, it may prove useful to explicitly characterize anhedonia in
terms of abnormal reward-based decision-making. Consequently,
we propose that one manifestation of anhedonic symptoms may
result in an impaired ability for normative decision-making. We
term this “decisional anhedonia”, wherein the ability to balance
costs and benefits when selecting among multiple options is
impaired. We emphasize that decisional anhedonia is independent
from cognitive or reasoning ability; making poor choices about
complex financial instruments does not imply decisional anhe-
donia. Rather, we suggest that decisional anhedonia occurs when
reward-based decision-making has (1) changed from a pre-morbid
state and, (2) results in choices that substantially differ from nor-
mative decisions about potential cost–benefit choices. Importantly,
we are not suggesting that decisional anhedonia is necessarily
orthogonal to motivational or consummatory anhedonia. Rather,
we suggest that the general, steady-state aspects of either motiva-
tional or consummatory anhedonia (or both), may lead to distinct
decision-making impairments such that individuals overestimate
future costs, underestimate future benefits, or simply fail to inte-
grate cost/benefit information in a consistent manner, leading to
erratic choice behavior. The critical benefit of focusing on a deci-
sional anhedonia is that it provides clear behavior hypotheses and
can be more readily linked to animal models.

One key component of decisional anhedonia may be an overesti-
mation of costs associated with gaining different types of rewards.
This is broadly consistent with a thoroughly documented neg-
ative response bias in MDD, a hypersensitivity to punishment,
and a tendency to remember negative information (Gotlib et al.,
2004a,b; Joormann et al., 2006; Surguladze et al., 2004). Although
we are aware of no direct investigations of cost/benefit decision-
making in MDD, several studies provide initial support for the
decisional anhedonia hypothesis. For instance, a recent study found
that depressed individuals have difficulty integrating probabilis-
tic reward cues (Forbes et al., 2006). Similarly, another study
found that depressed individuals made less coherent choices on
nsidering anhedonia in depression: Lessons from translational
v.2010.06.006

an intertemporal choice task, possibly suggesting a deficit in the 1000

ability to represent the value of future rewards in a consistent 1001

manner (Takahashi et al., 2008). A second intertemporal choice 1002

experiment reported that individuals with MDD showed a greater 1003

tendency to pick the delayed option, possibly reflecting a dimin- 1004
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shed sensitivity to reward magnitude of the immediate option
Lempert and Pizzagalli, 2010). Two other reports found altered
atterns of reward decision-making using the Iowa Gambling Task

n depressed individuals (Must et al., 2006; Smoski et al., 2008).
inally, some additional support for the concept of decisional
nhedonia comes from schizophrenia, in which negative symp-
oms can include motivational anhedonia. The severity of negative
ymptoms in schizophrenia is inversely correlated with delay dis-
ounting (Heerey et al., 2007), a finding that is consistent with
he MDD findings discussed above. Taken together, these data pro-
ide preliminary data to suggest that anhedonia in mood disorders
ay be associated with an impaired ability to accurately represent

uture costs and benefits during decision-making.

.1. Neural mechanisms of decisional anhedonia

The key advantage of adopting a focus on decision-making
n understanding the neural substrates of anhedonia is that
his approach may help us move beyond the identification of a
iomarker to the development of mechanistic hypotheses. Based on
reclinical models, deficits in cost/benefit decision-making may be
consequence of functional impairments in a network comprised
f the NAcc, ACC, amygdala and mesolimbic DA, each of which has
een shown to be necessary for cost/benefit decision-making, as
epicted in Fig. 4.

As with the effects of NAcc DA depletion, ablation of rat ACC—but
ot neighboring infralimbic cortex—results in a behavioral shift
owards LC/LR options during effort-based decision-making
Schweimer and Hauber, 2005; Schweimer et al., 2005; Walton et
l., 2002, 2003, 2004, 2005, 2006, 2007, 2009). D1 receptor blockade
ithin the ACC also produces similar effects on choice behavior. In

eeking to integrate these findings with existing data on mesolim-
ic DA function, it has been suggested that the ACC is primarily

nvolved in evaluating the costs and benefits of a given set of
ptions. This role is consistent with a large number of studies that
ndicate that activity in the ACC is associated with processing future
nd current costs, including probability, pain and effort (Croxson et
l., 2009; Knutson et al., 2005; Rushworth and Behrens, 2008; Talmi
t al., 2009).

After its initial cost/benefit assessment, the ACC then relays this
nformation via glutamatergic afferents to NAcc medium spiny neu-
ons. Disconnection of ACC–NAcc afferent fibers also results in a
hift away from HC/HR options (Hauber and Sommer, 2009). Addi-
ionally, disconnection between the amygdala and ACC produce a
imilar shift, consistent with the notion that the amygdala plays
n important role in the initial appraisal of reward, which may
odulate ACC input to the NAcc (McGinty and Grace, 2009a,b).
In the NAcc, MSN receiving prefrontal cost–benefit information

ay be modulated by mesolimbic DA, which is able to help “moti-
ate” the animal toward the HC/HR option by orienting the NAcc
o the reward side of the equation. In so doing, DA reduces the cost
ide of the cost/benefit ratio, thereby providing a means through
hich DA can help the organism overcome response costs. Evi-
ence for this comes from the fact that when the difference in work
equirements are between HC/HR and LC/LR options are low (e.g.,
ne lever-press), lesions of NAcc DA terminals show little effect,
ut become more severe as response costs increase (Mingote et al.,
005; Phillips et al., 2007). More recently, it has been shown that
Acc measured in vivo using fast-scan cyclic voltammetry exhibits
monotonic relationship with changes in reward magnitude but
ot for changes in responses costs (Gan et al., 2009). Similarly
Please cite this article in press as: Treadway, M.T., Zald, D.H., Reco
neuroscience. Neurosci. Biobehav. Rev. (2010), doi:10.1016/j.neubiore

n humans, it has been reported that increasing DA availability
ia l-DOPA administration can increase reports of expected gain
rom future rewards, consistent with the idea that DA helps over-
ome possible costs by emphasizing the value of potential benefits
Sharot et al., 2009).

1081
dala; DA, dopamine projections; GABA, GABAergic projections; Glu, glutamatergic
projections; NAcc, nucleus accumbens; VP, ventral pallidum; VTA, ventral tegmental
area.

Given the importance of the NAcc, ACC, amygdala and
mesolimbic DA function in promoting normative cost/benefit
decision-making, it is noteworthy that this network is heavily
impacted in MDD, as described above. To date, however, only
two neuroimaging studies have directly assessed reward-based
decision-making in MDD, both of which used the wheel-of-fortune
task (Ernst et al., 2004), in which separate events are modeled for
reward decision, reward anticipation and reward feedback. In the
first study, it was found that depressed individuals showed reduced
ACC activation compared to controls during reward decision-
making (Smoski et al., 2009), suggesting a possible failure to
appropriately engage this region. The second study was a follow-up
to the first, in which MDD subjects were scanned again after having
nsidering anhedonia in depression: Lessons from translational
v.2010.06.006

received a brief behavioral treatment. Remitted individuals showed 1082

increased activation in ACC during reward decision-making relative 1083

to their baseline scan (Dichter et al., 2009). Taken together, these 1084

data provide initial support for alterations in ACC during reward 1085
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ecision-making in MDD, which is consistent with the role of the
CC in calculating costs and benefits.

This decrease in ACC BOLD signal in MDD patients during
ost–benefit decision-making appears inconsistent with previously
entioned studies that reported increased ACC activation in MDD

atients. Indeed, challenges remain in translating animal find-
ngs using electrophysiology and lesion methods with human fMRI
tudies, let alone patient populations. One reason may be that dif-
erent subregions of ACC may show exhibit differential patterns
f altered function in MDD. For example, increases in ACC in MDD
ave been primarily localized to subgenual and rostral regions dur-

ng resting-state, passive affective stimulus viewing and cognitive
ontrol tasks (Drevets et al., 2002; Keedwell et al., 2005a,b; Wagner
t al., 2008), while more dorsal regions ACC appear critical for
ost–benefit decision-making (Croxson et al., 2009; Rushworth et
l., 2004). Nevertheless, two general findings emerge that provide
nitial support the hypothesis that ACC dysfunction may underlie
ecisional anhedonia. First, MDD patients consistently exhibit an
ltered pattern of BOLD responses multiple portions of the ACC
cross a variety of tasks. Second, animal studies demonstrate that
his region (and its connections to the striatum) is critical for proper
ost/benefit decision-making. Consequently, failure to appropri-
tely engage the reward-processing relevant subregions of the ACC
ay contribute to alterations in reward decision-making in MDD.

uture studies will be required to further elucidate the possible role
f the ACC in decisional anhedonia.

. Anhedonia reconsidered

The fundamental goal of this paper has been to emphasize
he crucial importance of developing symptom definitions that
re aligned with both their clinical presentation and biological
asis. In the case of anhedonia in depression, we have noted that
hile behavioral studies of anhedonia in MDD have largely focused

n positively valenced affective stimuli, biological studies have
ocused on neural substrates that are more closely involved in moti-
ation and decision-making. This mismatch between symptom and
ubstrate is a critical obstacle for uncovering neurobiological mech-
nisms of anhedonia. Consequently, we recommend the use of two
ub-categories: motivational anhedonia and consummatory anhe-
onia. In this final section, we describe some of the implications of
his proposal for future research and treatment.

.1. Implications for future research

We suggest that future studies—particularly those using biolog-
cal measures—would benefit by measuring not only the presence
nd absence of anhedonia, but also subdividing this criterion into
otivational or hedonic elements. As a first step we would pro-

ose modifying psychiatric interviews such as the SCID to frame
nd code questions to clearly dissociate between these two facets
f anhedonia. The adoption of specific terms “motivational anhedo-
ia” and “consummatory anhedonia” are recommended as a means
f refining the description of anhedonic symptoms. This has already
egun to occur in the schizophrenia literature (Gard et al., 2007;
old et al., 2008) and should be extended to other disorders that

eature alterations in reward processing.
Further exploration of a possible “decisional anhedonia” may

rove difficult to assess via interview or self-report, and it is likely
hat more objective and quantitative measures will be necessary.
Please cite this article in press as: Treadway, M.T., Zald, D.H., Reco
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ecently, several experiment have been devised to explore sep-
rable aspects of motivation and decision-making (Heerey et al.,
007; Treadway et al., 2009a). In our own lab, we developed the
ffort-Expenditure for Rewards Task (EEfRT or “effort”), which was
dapted from animal paradigms of effort-based decision-making.
 PRESS
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Performance on this measure correlates with trait anhedonia, sug-
gesting its potential utility as an assessment tool.

In addition to studies of motivational and decisional anhedonia,
it is also recommended that researchers continue to explore the
neurobiology of consummatory anhedonia. Growing evidence sug-
gests that endogenous opioids play a key role in pleasure responses.
Remarkably, we were unable to identify any studies exploring the
possibility of opioid-mediated consummatory anhedonia in clinical
populations. In addition to opioids, animal research has highlighted
a specific role for the ventral pallidum in the experience of sub-
jective pleasure (Pecina et al., 2006). As such, it is tempting to
speculate that dysfunction of the ventral pallidum could be a key
mechanism in the clinical expression of consummatory anhedo-
nia. Unfortunately, there is a dearth of clinical studies addressing
this possibility. However, two case studies of patients with bilateral
ventral pallidal damage appear consistent with the animal data,
as both cases showed decreased self-reported responses to food
or drug rewards (Miller et al., 2006; Vijayaraghavan et al., 2008).
Given the strong projections of the NAcc to the ventral pallidum, it
seems plausible that severe disruptions of the NAcc (or NAcc DA)
could cause a secondary impact on the ventral pallidum, leading
to the simultaneous presentation of both motivational and con-
summatory anhedonia. In theory it is thus possible that selective
disruption of either the NAcc or ventral pallidum could result in
just one component of anhedonia, whereas the full symptom pic-
ture including both consummatory and motivational components
would only emerge with dysfunction of both regions.

5.2. Implications for treatment

The overall goal of improving our understanding of neurobio-
logical mechanisms is to improve treatment. If the assessment of
“motivational anhedonia” is improved, this could potentially serve
as a key predictor of treatment response to specific types of behav-
ioral or biological therapies shown to alter motivational systems.
We do not believe that these treatments will necessarily work for
all cases of depression, but suggest that they may be particularly
effective for treatment-resistant depressions involving significant
motivational anhedonia. This form of tailored treatment is the pri-
mary means of utilizing our enhanced knowledge of neurobiology
to improve clinical outcomes, but it is dependent on detailed phe-
notypic description to be successful.

Behavioral activation (BA) provides a potential example of a
specific psychotherapeutic technique that might be particularly
appropriate in cases with motivational anhedonia. Initially devel-
oped as a component of Cognitive Behavioral Therapy (CBT),
Behavioral Activation (BA) differs primarily in its conceptualiza-
tion of patient cognitions as a ruminative behavior (Dimidjian et
al., 2006). The goal of treatment is to help the patient identify
when they are engaging in rewarding and non-rewarding behav-
iors, and to help the patient make behavioral choices that are likely
to increase exposure to positively reinforcing experiences.

Initial evidence suggests that by emphasizing an increase in
motivated behaviors, BA may surpass CBT, particularly with clients
diagnosed with co-morbid personality disorders (Coffman et al.,
2007). Moreover, BA also includes specific techniques that address
symptoms of decisional anhedonia. In one such technique, the ther-
apist encourages the patient not to wait until the patient “feels like”
engaging in a reward activity, thereby circumventing MDD-related
impairments in reward decision-making due to lack of motivation
(Martell et al., 2001).
nsidering anhedonia in depression: Lessons from translational
v.2010.06.006

Recent evidence from neuroimaging studies also suggests that 1206

BA may specifically target the reward system. Whereas fMRI studies 1207

have shown that treatment response to CBT results in a progres- 1208

sive decrease in amygdala sensitivity to negative stimuli (Siegle 1209

et al., 2006), successful treatment with BA led to increased BOLD 1210
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esponses of the striatum during reward anticipation (Dichter et
l., 2009). Additionally, specific techniques used in BA treatments
lso address components of decisional anhedonia.

In terms of pharmacological treatments, the exploration of
ailored treatments for individuals experiencing motivational
nhedonia using DA-active pharmacotherapies is recommended.
his includes psychostimulants, DA agonists, and the NE/DA
euptake inhibitor bupropion. Of the current FDA approved antide-
ressant drugs with DA-acting properties, bupropion is the most
idely used in clinical practice. However, the pharmacological pro-
le of bupropion is complex, and its effects on reward processing

n animals and humans may rely on a variety of mechanisms, some
f which are still not entirely known.

It is well established that bupropion has little direct effect on
HT function (Stahl et al., 2004). Several studies exploring bupro-
ion occupancy of DAT at clinical doses have reported occupancy
ates ranging from 14% to 26% in the striatum (Kugaya et al., 2003;
earned-Coughlin et al., 2003; Meyer et al., 2002), which are rela-
ively low as compared to standard SERT occupancy rates of SSRIs
80%) or DAT occupancy of reinforcing psychostimulants (>50%)
Volkow et al., 1995, 1997, 1998). These findings suggest that
upropion’s direct ability to increase synaptic DA levels through
lockade of DAT may account for only some of its antidepressant
ffects. However, more recent work has also shown that bupro-
ion increases the activity of the intracellular vesicular monoamine
ransporter 2 (VMAT2) protein, which may enhance extracellu-
ar DA by increasing available DA in presynaptic pools (Rau et
l., 2005). Bupropion may also exert regionally specific influence
ver DA function through its action as an inhibitor of the nore-
inephrine transporter (NET), which is the primary transporter of
A in prefrontal regions. Finally, more recent work has suggested

hat bupropion decreases the activity of nicotinic acetylcholine
eceptors, which play a role in the effects of bupropion on psy-
homotor symptoms in MDD (see Dwoskin et al., 2006 for a review).

Preclinical studies have suggested that bupropion may be
superior treatment for symptoms of motivational anhedonia.

ats treated with bupropion demonstrate decreased immobil-
ty time during the forced swim test and tail suspension tests
Cryan et al., 2001, 2004) and showed greater willingness to
ork for food rewards during a progressive ratio task (Bruijnzeel

nd Markou, 2003). Moreover, the influence of bupropion was
locked via administration of both D1-like and D2-like receptor
ntagonists, suggesting that effects of bupropion were partially
ediated through DAergic mechanisms (Paterson and Markou,

007). Additionally, rats treated with either chronic or acute
oses of bupropion show a reduced threshold for intracranial self-
timulation of the posterior lateral hypothalamus (Paterson, 2009;
aterson et al., 2007). Similarly, bupropion enhanced responding
o a conditioned reinforcer (Palmatier et al., 2009), although a
eparate study reported a bupropion-induced decrease in respond-
ng for sucrose (Reichel et al., 2008). The latter result is contrary
o what would be expected, given the findings of Bruijnzeel and

arkou (2003) and highlights the complex effects of the bupropion
n reward processing. Interestingly, bupropion-mediated enhance-
ent of conditioned reinforcers in the study by Palmatier et al.
as ameliorated by Prazosin, an �2-NE receptor antagonist, sug-

esting that bupropion’s effects on reinforcement may also rely on
oradrenergic mechanisms.

In addition to bupropion, psychostimulants, including dex-
mphetamine, methylphenidate and modafinil, have also been
xplored as both monotherapy and adjunctive treatment options
Please cite this article in press as: Treadway, M.T., Zald, D.H., Reco
neuroscience. Neurosci. Biobehav. Rev. (2010), doi:10.1016/j.neubiore

or MDD. Results from these studies have not been encouraging
particularly in the case of monotherapy), although the majority of
tudies using psychostimulants were conducted several decades
go, before either DSM criteria or the Feighner criteria were in
lace (for reviews, see Orr and Taylor, 2007; Candy et al., 2008),
 PRESS
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and fail to meet current methodological standards for clinical tri-
als. More recently, however, interest has reemerged in the utility of
psychostimulants as an adjunctive therapy for specialized popula-
tions. In patients with advanced terminal illness, where tolerance
and abuse potential are less of a concern, psychostimulants have
shown a positive response, though few of these studies were
placebo-controlled (Orr and Taylor, 2007). Similarly, in elderly
populations, which often show less responsiveness to traditional
antidepressants (Paykel et al., 1995; Reynolds et al., 1999) and
exhibit higher rates of suicidality (Lebowitz et al., 1997), citalo-
pram augmentation with methylphenidate produced a positive and
rapid treatment response (Lavretsky and Kumar, 2001). Finally, DA
agonists such as bromocriptine, ropinirole and pramipexole also
exhibit antidepressant properties (Cassano et al., 2005; Corrigan
et al., 2000; Sitland-Marken et al., 1990). In addition to treating
depressed patients, pramipexole has also been shown to be suc-
cessful in treating anhedonic and depressive symptoms in patients
with Parkinson’s disease, an illness associated with both loss of
DA function and elevated rates of depressive illness (45%) (Lemke,
2008; Lemke et al., 2005).

Overall, head-to-head clinical trials between DA-acting agents
and other pharmacotherapies have revealed strikingly simi-
lar response rates in the case of bupropion and pramipexole,
(Chouinard, 1983; Coleman et al., 1999; Corrigan et al., 2000; Croft
et al., 1999; Kavoussi et al., 1997; Mendels et al., 1983; Thase et
al., 2005; Weihs et al., 2000; Weisler et al., 1994). For psychostim-
ulants, response rates are usually significantly worse than other
alternatives (Candy et al., 2008; Orr and Taylor, 2007). However,
the potential role of DA-acting drugs as a superior treatment for
anhedonic symptoms has received some empirical support. Bupro-
pion has shown to be more effective at treating symptoms related
to motivational and consummatory anhedonia (Bodkin et al., 1997;
Tomarken et al., 2004). In a large-sample review of treatment
records of 910 patients receiving outpatient pharmacotherapy for
depression, Jamerson et al. (2003) reported that patients receiving
bupropion sustained release (SR) showed significant improvement
of symptoms related to reduced interest, energy and loss of libido
as compared to placebo. Additionally, bupropion is often used to
counter-act specific side effects of SSRIs (Nutt et al., 2007), which
may include reduced responsiveness to rewards and positive expe-
rience (McCabe et al., 2009a,b; Price et al., 2009; Shelton and
Tomarken, 2001). A recent meta-analysis of DA-acting antidepres-
sant treatments suggests that they enhance overall quality-of-life
in individuals with MDD (IsHak et al., 2009). These findings are
not only promising in terms of treatment options; they also fur-
ther underscore the importance of tailoring DA-acting treatments
to specific symptoms.

Although we have emphasized the role of DA function in the
pathophysiology and treatment of motivational anhedonia, DA rep-
resents only one component of a highly complex and integrated
circuit. Indeed, more recent developments in novel compounds for
treatment of depression have focused less on monoamine systems
directly, and more on systems that may regulate and/or interact
with monoamines, such as glutamate. Recent evidence suggests
that depression may be associated with reduced glutamate func-
tion in prefrontal regions including the ACC (Hasler et al., 2007),
especially in individuals with anhedonic symptoms (Walter et al.,
2009). Glutamatergic projections from the ACC to the NAcc appear
to be critical for effort-based decision-making behavior in ani-
mals (Hauber and Sommer, 2009), and therefore may play a role
in motivational and/or decisional anhedonia. Additionally, studies
nsidering anhedonia in depression: Lessons from translational
v.2010.06.006

exploring the effects of glutamatergic compounds in the treatment 1338

of depression show promising initial results (McEwen et al., 2010; 1339

Rakofsky et al., 2009). Future research will be required to deter- 1340

mine whether monoaminergic alterations in MDD are downstream 1341

consequences of glutamatergic dysfunction.

dx.doi.org/10.1016/j.neubiorev.2010.06.006
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.3. Anhedonia as a case study for biologically based clinical
efinitions

When Roy Wise and others first observed that neuroleptics
educed reward-dependent lever-pressing behavior in rats, it was
atural for him to interpret this finding in terms of pleasure, stating
t the time that neuroleptics “appear to. . .take the ‘goodness’ out
f normally rewarding food” (Wise et al., 1978). In everyday experi-
nce, we often assume that we want what we like and like what we
ant. The widespread acceptance of Wise’s conclusion most likely

eflected the fact that at the time, there was insufficient reason
o assume that wanting and liking would be neurally dissociable.
ndeed, one could even have argued that such a proposition would
ave violated the law of parsimony. However, the fault lines of neu-
obiology do not necessarily match the intuitive understanding of
ur phenomenological experience.

The same can be said of clinical disorders and symptoms. While
e have focused on a specific symptom in a specific disorder, we

elieve that anhedonia may serve as a useful case study regard-
ng the inherent difficulties in linking clinical constructs to neural
ubstrates. Many of the early approaches to biological and neu-
oimaging methods adopted a medical model of diagnosis, which
mphasizes identification of specific biomarkers of a disorder. This
pproach has been very productive to date, but its potential for
uture advances may be limited by the vagueness of clinical defini-
ions. In particular, the presence of multiple forms of heterogeneity
t the level of co-morbidity, symptoms and etiology may hinder the
etection of important neurobiological markers.

One strategy for meeting this challenge is the use of preclinical
odels as a means of identifying those cases of symptom, disor-

er or etiological heterogeneity that are likely to impact different
eural substrates. While we believe that this approach is essential,
limitation should be acknowledged. Namely, it requires clinical

esearchers to “look where that light is”, and focus on those symp-
oms for which a sufficiently extensive animal literature exists.
ndeed, the arguments presented in this review were made possible
y the monumental efforts of basic science researchers over the last
ew decades. At the current time, availing oneself of the preclinical
iterature would produce far less benefit if one were attempting a
imilar strategy for other symptoms in MDD, such as guilt. Addi-
ionally, by focusing on specific symptoms, this approach may be
imited in its ability to explain the larger constellations of symp-
oms that characterize many of our current categorical diagnoses.
rguments for this translational approach to examining specific
ymptom classes will be most powerful when there is a strong case
o be made for the uniqueness of a class of symptoms (for instance
ue to differential genetics or treatment response), but such an
pproach may prove more difficult to support in the absence of
uch evidence.

. Conclusion

In the present review we have argued that studies of anhe-
onia in MDD should be informed by animal models of reward
rocessing. Specifically, we suggest that current clinical definitions
f anhedonia are too broad. As the processes of reward wanting
nd liking are found to rely on separate neural systems, depres-
ion research must attend to these distinctions in order to develop
pecific neurobiological models and novel treatment targets. As
multi-faceted construct, anhedonia requires a more thorough

haracterization than is currently provided in the DSM or com-
Please cite this article in press as: Treadway, M.T., Zald, D.H., Reco
neuroscience. Neurosci. Biobehav. Rev. (2010), doi:10.1016/j.neubiore

on self-report assessments. We propose that clinical symptoms of
nhedonia be divided into motivational and consummatory anhe-
onia in order to closely parallel the animal literature on reward.
dditionally, we propose that an alternative way to conceptualize
nhedonia is by focusing on decision-making, rather than general
 PRESS
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mood, as this strategy lends itself particularly well to translational
research approaches.

When Ribot first defined anhedonia, the field of neuroscience
was still in its infancy. In the ensuing 113 years, understanding of
the neurobiological systems involved in the processing of rewards
has grown exponentially, while the construct of anhedonia remains
relatively unaltered. We believe that in order to fulfill the promise
of sophisticated neurobiological research methods, we must adopt
equally sophisticated behavioral measures and clinical definitions.
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