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Impulsivity is a complex trait associated with a range of maladap-
tive behaviors, including many forms of psychopathology. Previous
research has implicated multiple neural circuits and neurotransmit-
ter systems in impulsive behavior, but the relationship between
impulsivity and organization of whole-brain networks has not yet
been explored. Using graph theory analyses, we characterized the
relationship between impulsivity and the functional segregation
(“modularity”) of the whole-brain network architecture derived from
resting-state functional magnetic resonance imaging (fMRI) data.
These analyses revealed remarkable differences in network organ-
ization across the impulsivity spectrum. Specifically, in highly impul-
sive individuals, regulatory structures including medial and lateral
regions of the prefrontal cortex were isolated from subcortical
structures associated with appetitive drive, whereas these brain
areas clustered together within the same module in less impulsive
individuals. Further exploration of the modular organization of
whole-brain networks revealed novel shifts in the functional con-
nectivity between visual, sensorimotor, cortical, and subcortical
structures across the impulsivity spectrum. The current findings
highlight the utility of graph theory analyses of resting-state fMRI
data in furthering our understanding of the neurobiological architec-
ture of complex behaviors.
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Introduction

There is strong evidence that individual differences in normal
personality traits underlie liability for a broad range of psy-
chopathology (Moeller et al. 2001; Krueger and Markon
2006). One such cross-cutting trait is impulsivity: the ten-
dency to act quickly without considering the broader,
especially future, consequences of one’s actions. High trait
impulsivity is robustly associated with the externalizing spec-
trum of psychopathology (Krueger et al. 2005), including anti-
social personality disorders (Swann et al. 2009), substance
use disorders (Madden et al. 1997; Jentsch and Taylor 1999;
Kirby et al. 1999; Volkow and Fowler 2000; Beck et al. 2009),
attention-deficit/hyperactivity disorder (ADHD) (Dalley et al.
2008), and pathological gambling (Alessi and Petry 2003). In
contrast, low trait impulsivity has been associated with inter-
nalizing disorders such as depression and anxiety (Eisenberg
et al. 2001, 2009), although the precise relationships vary de-
pending on the specific traits assessed (Corruble et al. 1999,
2003; Cosi et al. 2011). Developing a comprehensive neuro-
biological understanding of trait impulsivity may hold
promise in mapping the shared and unique etiologic risk for

such psychopathology and, ultimately, informing the ad-
vancement of treatment and prevention strategies.

Recent neuroscience research in both humans and nonhu-
man animals indicates that individual differences in several in-
terconnected neural circuits, including the mesocorticostriatal
and corticolimbic networks, are associated with trait impulsiv-
ity (Jentsch and Taylor 1999; Volkow and Fowler 2000; Cardi-
nal et al. 2001; McClure et al. 2004; Brown et al. 2006; Dalley
et al. 2008; Forbes et al. 2009; Somerville et al. 2011). Investi-
gations of categorical mental disorders show that impulsive
behavior is related to decreased functional (Williams et al.
2006; Wolf et al. 2011; Xie et al. 2011) and structural (Romero
et al. 2010) connectivity in these same circuits. Similarly, im-
pulsivity has been linked to dysregulation of several neuro-
transmitter systems involved in the modulation of these
neural circuits (Dolan et al. 2002; King et al. 2003; McClure
et al. 2004; Dalley et al. 2008; Forbes et al. 2009; Buckholtz
et al. 2010).

Given the demonstrated influence of multiple systems on
this complex behavioral trait, it is possible that individual
differences in impulsivity are associated with broader patterns
of global information processing that extend beyond the pre-
viously identified circumscribed alterations in mesocorticos-
triatal and corticolimbic circuits. Resting-state functional
connectivity (FC) analyses have proven to be a useful tool for
probing global brain organization. Such analyses in healthy
individuals have revealed characteristic neural networks
shaped by anatomical pathways that become engaged during
various cognitive processes or during the default mode when
there is no explicit processing of stimuli or information (Fox
and Raichle 2007; Biswal et al. 2010; Raichle 2011). Graph
theory provides a unique quantitative approach to mapping
whole-brain network organization, particularly from resting-
state data. By mathematically modeling links between
elements of coupled systems (Sporns et al. 2004; Bullmore
and Sporns 2009), graph theory analyses essentially character-
ize the topology and spatial patterns of temporal correlations
across the brain. Functional neuroimaging studies have
shown that such analyses can quantify core metrics, reflecting
individual differences in whole-brain network organization
(Wang et al. 2009; Chanraud et al. 2011; Zhang et al. 2011).
To date, however, such approaches have focused mainly on
group comparisons in case/control studies of specific clinical
populations and have not been used to assess neural
substrates for variable personality traits that are known risk
factors for multiple forms of psychopathology.

In the current study, we examined properties of network
organization across the whole brain as they relate to self-

© The Author 2012. Published by Oxford University Press. All rights reserved.
For Permissions, please e-mail: journals.permissions@oup.com

Cerebral Cortex
doi:10.1093/cercor/bhs126

 Cerebral Cortex Advance Access published May 29, 2012
 at V

anderbilt U
niversity - M

assey L
aw

 L
ibrary on June 27, 2013

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/


reported impulsivity through graph theory analyses of resting-
state blood oxygen level-dependent (BOLD) functional mag-
netic resonance imaging (fMRI) data. From a large sample (N
= 200) of 18–22-year-old volunteers, we compared whole-
brain network organization between groups of individuals
falling in the middle and tail-ends of our observed self-
reported impulsivity distribution. Specifically, we partitioned
the respective FC networks of the 20 individuals scoring in
the top 10% (i.e. high impulsivity), middle 10% (i.e. inter-
mediate impulsivity), and bottom 10% (i.e. low impulsivity) of
our sample by optimizing a fully weighted version of a widely
used graph-based modularity metric (Girvan and Newman
2002; Rubinov and Sporns 2011). The resulting optimal
module partitions represent communities of brain regions that
have stronger functional connections with each other than
with those in other modules. In a secondary analysis, we cal-
culated the FC density using a “sliding window” across all 200
participants to probe changes in inter- and intramodule FC.

Materials and Methods

Participants
A total of 200 subjects (117 women and mean age 19.65 ± 1.30 years)
were included from an ongoing parent protocol, the Duke Neuroge-
netics Study (DNS), which assesses a wide range of behavioral and bio-
logical traits among nonpatient, young adult, student volunteers. All
participants provided informed consent in accordance with Duke Uni-
versity guidelines and were in good general health. The participants
were free of the following study exclusions: (1) medical diagnoses of
cancer, stroke, head injury with loss of consciousness, untreated
migraine headaches, diabetes requiring insulin treatment, chronic
kidney or liver disease, or lifetime history of psychotic symptoms; (2)
use of psychotropic, glucocorticoid, or hypolipidemic medication; and
(3) conditions affecting cerebral blood flow and metabolism (e.g.
hypertension). Diagnosis of any past or current Axis I disorder as
defined by the Diagnositc and Statistical Manual of Mental Disorders,
4th Edition (DSM IV) (First et al. 1995) was not an exclusion as the
DNS seeks to establish broad variability in multiple behavioral pheno-
types related to psychopathology (e.g. impulsivity). However, as stated
earlier, no subjects were taking psychotropic medication at the time of
or at least 10 days prior to study participation. See Supplementary
Table S1 for information regarding the observed distribution of psycho-
pathology in the current sample.

Behavioral Assessment
All participants completed the Barratt Impulsiveness Scale (BIS), a
reliable and valid 30-item self-report questionnaire designed to
measure impulsivity (Patton et al. 1995). Each item is measured on a
4-point Likert scale, with higher values indicating greater impulsivity
(Patton et al. 1995). The BIS assesses impulsivity on 3 subscales: (1)
tendency to act without thinking (motor impulsivity), (2) readiness to
make quick cognitive decisions (cognitive impulsivity), and (3)
degree of focus on only the present (nonplanning impulsivity).

Because the aspects of impulsivity measured by the BIS are inver-
sely associated with socioeconomic status in both clinic and commu-
nity samples (Flory et al. 2006), we controlled for social rank in the
analyses using the social ladder scale (Adler et al. 2000). Participants
were shown a ladder and asked to place themselves on the rung
which best corresponded to where they stood in society, with the top
of the ladder representing those who are the best off and the bottom
representing those who are the worst off. Participants also answered
this question based on how they perceived each of their biological
parents, and the average of these 3 responses was taken as their
social status score.

Structural Equation Modeling
To control measurement error and to minimize the number of statisti-
cal comparisons, a latent impulsivity construct was defined using con-
firmatory factor analysis by allowing the 3 BIS impulsivity subscales
to load on a latent impulsivity factor, which achieved a close fit
[model χ2 = 183.32, DF = 10, P < 0.0001; root mean square (RMS) error
of approximation = 0.032 (90% confidence interval = 0.000–0.097);
standardized RMS residual = 0.033; and comparative fit index = 0.991].
All models controlled for the participants’ age, gender, IQ, social
status, and race/ethnicity. Based on our observed distributions,
race/ethnicity was assessed using 3 dummy contrasts comparing
African-Americans, Asian-Americans, and members of other race–
ethnic groups with non-Hispanic whites.

BOLD fMRI Data Acquisition
Each participant was scanned using a research-dedicated GE MR750
3 T scanner at the Duke-UNC Brain Imaging and Analysis Center. This
scanner is equipped with high-power, high-duty-cycle 50 mT/m gra-
dients at 200 T/m/s slew rate and an 8-channel head coil for parallel
imaging at high bandwidth up to 1 MHz. A semi-automated high-
order shimming program was used to maximize global field hom-
ogeneity. To allow for spatial registration of each participant’s data to
a standard coordinate system, high-resolution 3-dimensional structural
images were acquired in 34 axial slices coplanar with the functional
scans [repetition time (TR)/echo time (TE)/flip angle = 7.7 s/3.0 ms/
12°; voxel size = 0.9 × 0.9 × 4 mm; field of view (FOV) = 240 mm; inter-
slice skip = 0]. For the 4 min, 16 s resting-state scan, a series of 34
interleaved axial functional slices aligned with the anterior commis-
sure–posterior commissure plane were acquired for whole-brain cov-
erage using an inverse-spiral pulse sequence to reduce susceptibility
artifact (TR/TE/flip angle = 2000 ms/30 ms/60°; FOV = 240 mm; voxel
size = 3.75 × 3.75 × 4 mm; interslice skip = 0). Four initial radiofre-
quency excitations were performed (and discarded) to achieve
steady-state equilibrium. Participants were shown a blank gray screen
and instructed to lie still with their eyes open, think about nothing in
particular, and remain awake.

BOLD fMRI Data Preprocessing and Correlations
Preprocessing of all resting-state fMRI data was conducted at the Lab-
oratory of NeuroGenetics at Duke University using SPM8 (www.fil.ion.
ucl.ac.uk/spm). Images for each subject were slice-time-corrected,
realigned to the first volume in the time series to correct for head
motion, spatially normalized into a standard stereotactic space (Mon-
treal Neurological Institute template) using a 12-parameter affine
model (final resolution of functional images = 2 mm isotropic voxels),
and smoothed to minimize noise and residual differences in gyral
anatomy with a Gaussian filter, set at 6 mm full-width at half-
maximum. Structural regions of interest (ROIs) were isolated using the
Harvard-Oxford probabilistic cortical and subcortical atlases provided
with FMRIB’s Software Library distribution (www.fmrib.ox.ac.uk/fsl)
and thresholded at 0.5. Each ROI was registered to the subject’s native
space, and 7 ROIs were excluded from the analysis: bilateral white
matter, bilateral cortical gray matter and bilateral ventricles, which were
outside the scope of this work, and left supracalcarine cortex, which
was excluded due to poor registration, resulting in a total of 111 ROIs
per participant. Mean time series were extracted from each ROI and
subsequently subjected to a temporal band-pass filter, retaining fre-
quencies between 0.008 and 0.09 Hz. Finally, individual head motion
realignment parameters, mean global gray matter, ventricular, and
white matter signals were regressed from each ROI time series, and
Pearson’s correlations between all ROI pairs were calculated on the
residuals.

Head Motion
To compare head motion across low, intermediate, and high impulsiv-
ity groups, we first calculated the RMS, framewise displacement (FD),
and temporal derivative of the fMRI time series (DVARS) (Power et al.
2012) for each group. We then calculated a 1-way analysis of variance
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(impulsivity groups: low, intermediate, and high) for the RMS, FD,
and DVARS separately.

Graph Analyses
The network of nodes (anatomical ROIs) and edges (statistical
relationships) formed by the cross-correlations above was then sub-
jected to graph-based analyses estimating modularity, which is a
global graph metric characterizing the clustering and segregation of
functional modules. Modularity was calculated in fully weighted func-
tional networks (Newman 2006) using a Louvain fast-unfolding algor-
ithm (Blondel et al. 2008), followed by fine-tuning of the module
partition (Sun et al. 2009). We estimated modularity using a measure
that takes into account scaled contributions from both positive and
negative functional connections, yielding:

Q� ¼ Qþ þ v�

vþ þ v�
Q�

¼ 1
vþ

X

ij

ðwþ
ij � eþij ÞdMiMj �

1
vþ þ v�

X

ij

ðw�
ij � e�ij ÞdMiMj :

ð1Þ

All reported modularity data represent optimal solutions obtained
from 100 000 independent optimizations with varying initial con-
ditions. Optimization of the modularity metric yields the correspond-
ing optimal partition of the network into non-overlapping modules or
network communities that were the main objectives of the present
study. Partition distances between the 2 partitions M and M 0 were
computed as the mutual information:

IðM;M 0Þ ¼
X

u[M

X

u0[M 0
Pðu;u0Þ log Pðu;u0Þ

PðuÞPðu0Þ;

where Pðu;u0Þ ¼ nuu0=n, and nuu0 is the number of nodes that are
simultaneously in module u of partition M and in module u0 of
partition M0.

FC Density
The average FC matrix was computed over the entire sample
(N = 200), and the modularity analysis of this globally averaged matrix
resulted in 4 modules. Using this global module partition, the mean
FC density was derived within and between modules for each individ-
ual subject by computing the mean overall cross-correlations (positive
and negative weights) for each within-module and between-module
submatrix. Using a moving window (window size = 20 subjects,
overlap of 10 subjects, resulting in 19 group samples across the spec-
trum of 200 subjects), we then calculated average FC densities for
each of the 19 group samples and computed correlations between
group-averaged FC density and impulsivity.

Results

Self-Reported Impulsivity
The total raw scores from the BIS ranged from 40 to 106
across the entire sample, with a mean (standard deviation,
SD) of 62.43 (9.31). Average BIS scores for the low, intermedi-
ate, and high impulsivity groups were 48.2 (SD = 3.78), 60.85
(SD = 1.31), and 79.65 (SD = 7.01), respectively. Note that raw
BIS total scores are reported here for comparison with prior
work, whereas our 3 groups were identified using residua-
lized latent impulsivity scores (see Materials and Methods)
accounting for the effects of gender, IQ, social status, and
race/ethnicity (Supplementary Table S2). These residualized
scores were highly correlated with raw BIS total scores
(r = 0.871, P < 0.001).

Head Motion
Mean (SD) RMS motion for the impulsivity groups were as
follows: low 0.07 (0.05), intermediate 0.10 (0.10), and high
0.11 (0.09). A 1-way analysis of variance (impulsivity groups:
low, intermediate, and high) revealed no difference in RMS
motion across groups (F2,57 = 0.94, P = 0.40). Mean (SD) LD
for impulsivity groups were as follows: low 0.06 (0.05), inter-
mediate 0.06 (0.04), and high 0.06 (0.03). A 1-way analysis of
variance (impulsivity groups: low, intermediate, and high) re-
vealed no difference in FD across groups (F2,57 = 0.01, P =
0.99). Mean (SD) DVARS for impulsivity groups were as
follows: low 0.79 (0.17), intermediate 0.85 (0.20), and high
0.84 (0.14). A 1-way analysis of variance (impulsivity groups:
low, intermediate, and high) revealed no difference in DVARS
across groups (F2,57 = 0.65, P = 0.53).

General Patterns of Connectivity
Resting-state FC patterns among 111 cortical and subcortical
nodes were derived for each individual subject. A composite
map, computed as the average functional network over the
entire sample, exhibited high modularity as estimated from
the fully weighted functional network (eq. 1; Q* = 0.5757) for
an optimal partition into modules. Modules were found to be
largely symmetric across the 2 cerebral hemispheres, and the
composition of these modules closely corresponded to that
identified previously (Rubinov and Sporns 2011) in large
samples of resting-state fMRI data collected in the 1000 Func-
tional Connectomes Project (Biswal et al. 2010).

Patterns of FC for High, Intermediate, and Low
Impulsivity Groups
As detailed in Supplementary Table S3 and Figures 1 and 2,
analyses revealed distinct patterns of modularity as a function
of impulsivity. In the low impulsivity group, our analyses
identified 3 distinct modules (Figs 1A and 2). In contrast,
4 modules were identified in both the middle and high impul-
sivity groups (Figs 1B,C and 2). Brain areas falling within
Module 1 were consistent across all 3 groups and primarily
comprised visual areas such as the lateral occipital cortex,
cuneus, and the lingual gyrus. Some brain regions in Module
2, such as those associated with sensory and motor functions,
were consistent across groups, whereas other regions (e.g.
inferior frontal gyrus—pars opercularis, superior temporal
gyrus, and supramarginal gyrus) varied as a function of
impulsivity.

Module 3 changed more dramatically across groups. In the
low impulsivity group, Module 3 consisted of both cortical
regions (e.g. orbital and medial frontal cortices, posterior cin-
gulate gyrus, and superior, middle, and inferior frontal gyri)
and subcortical regions (e.g. thalamus, caudate, hippo-
campus, amygdala, and nucleus accumbens). In contrast,
several of these brain regions were found in Module 4 in both
intermediate and high impulsivity groups. In the intermediate
group, the brainstem and some subcortical regions including
the hippocampus, parahippocampal gyrus, and amygdala
were partitioned into Module 4. In the high impulsivity
group, Module 4 comprised these subcortical regions as well
as the caudate, nucleus accumbens, and thalamus. The tem-
poral pole was in Module 3 in the high and low impulsivity
groups, but in Module 4 in the intermediate group.

Cerebral Cortex 3
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Figure 1. Matrix of inter-regional FC averaged over participants with the bottom 10% (A), middle 10% (B), and top 10% (C) of latent impulsivity scores (i.e. low, intermediate,
and high impulsivity groups) and displayed for the HOA ROIs used in all analyses. Rows and columns correspond to 111 cortical and subcortical regions, partitioned according to
the maximal modularity score and arranged so as to match the ordering of regions given in Supplementary Table S3. Red entries refer to positive FC and blue entries refer to
negative FC (see scale to the right). Additionally, the HOA ROIs are overlaid on a template brain using MRIcron and color-coded by the corresponding module partition for the low
(D), intermediate (E), and high (F) impulsivity groups: yellow =Module 1, green =Module 2, blue =Module 3, and red =Module 4.

Figure 2. Backbone plots visualizing the inter-regional FC for the low, intermediate, and high impulsivity groups. The connectivity backbone is derived in 2 steps (Hidalgo et al.
2007). First, we extracted within-module maximum spanning trees connecting all the nodes in each module such that connection weights are maximal. Secondly, connections
across the whole network were added in order of their weight until a desired average node degree k (here, k= 14) was reached. The resulting connectivity backbone was then
laid out in 2 dimensions using the Kamada–Kawai spring embedding algorithm (Kamada and Kawai 1989). Nodes are colored according to their module assignment: yellow=
Module 1, green =Module 2, blue =Module 3, and red =Module 4. See Supplementary Table S4 for ROI abbreviations.
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To assess the stability of the module assignments for each
of the 3 groups, we performed a jackknife analysis by recom-
puting module partitions for subsamples of the 3 groups,
leaving out 1 participant at a time. We quantified module stab-
ility in 2 ways. In the first approach, we computed the par-
tition distance between each of the 20 subsamples and the
original partition for the low, intermediate, and high impul-
sivity groups. Partition distance was quantified as the mutual
information between the partitions, with a value of 1 indicat-
ing identical partitions. Average partition distances for the
low, intermediate, and high impulsivity groups were
0.9417 (SD = 0.0774), 0.8375 (SD = 0.0807), and 0.8379
(SD = 0.0933), respectively. For comparison, partition dis-
tances between the original groups were 0.8030 (low–inter-
mediate), 0.7878 (low–high), and 0.7591 (intermediate–high),
and the mean partition distance for between-group sub-
samples was 0.7485 (SD = 0.0800). These comparisons against
the jackknife subsamples indicate that the 3 impulsivity group
partitions show a high degree of consistency.

FC Density
This analysis revealed 2 significant within-module and 3
between-module correlations with our latent impulsivity con-
struct (Fig. 3). Impulsivity was positively correlated with FC
density within Modules 1 (r = 0.661, P = 0.002) and 3 (r =
0.488, P = 0.0339). That is, as impulsivity increased, functional
coupling between brain areas within the visual (Module 1)
and cortical control (Module 3) networks increased. Across
modules, we found that functional coupling between the
visual Module 1 and the cortical control Module 3 (r =−0.739,
P = 0.003) as well as the subcortical drive Module 4 (r =
−0.549, P = 0.015) decreased as impulsivity increased. Finally,
we found that the FC between the sensorimotor Module 2 and
the subcortical drive Module 4 increased with increasing im-
pulsivity (r = 0.577, P = 0.0097).

Discussion

Our graph theory analyses of resting-state BOLD fMRI data re-
vealed striking differences in the organization of whole-brain
neural networks as a function of impulsivity (Figs 1 and 2 and
Supplementary Table S3). Across impulsivity groups, the first
and second modules were relatively consistent, in which
visual cortical structures clustered together in the first module
and sensorimotor structures clustered together in the second
module. Interestingly, we found striking differences in
module composition in the third and then fourth modules
across impulsivity groups. In the low impulsivity group, we
observed 3 modules, where the third module comprised corti-
cal regions associated with cognitive control, emotion regu-
lation, and directing and focusing attention clustered together
with subcortical regions involved in appetitive drive. In the
high impulsivity group, this third module was broken into 2
distinct modules in which the cortical control regions became
isolated from subcortical drive structures including the
caudate, nucleus accumbens, amygdala, hippocampus, thala-
mus, and brainstem. These differences in whole-brain func-
tional organization provide support for the idea that high
impulsivity reflects a breakdown in effortful, cognitive control
over the drive for immediate rewards (Eisenberg et al. 2001;
Casey et al. 2008).

While differences in module partitioning between the low
and high impulsivity groups are particularly striking, the
module partitioning in the intermediate impulsivity group,
which reflects the majority of the distribution of impulsivity
scores in a general population, provides an interesting con-
trast to both the low and high groups. In this intermediate
group, a smaller subset of the subcortical drive structures
breaks off and forms a fourth module. Specifically, the
amygdala, hippocampus, parahippocampal gyrus, fusiform,
and brain stem move into this fourth module, reflecting the
fact that these structures show increased functional coupling
with each other and decreased functional coupling with the
brain regions that remain in Module 3. Brain regions that
remain in Module 3 in this intermediate group include the
nucleus accumbens and caudate. The fact that the nucleus
accumbens is partitioned into the third module whereas the
amygdala and hippocampus fall into the fourth module in
this intermediate group is particularly interesting in light of
recent research by Nikolova et al. (2011), showing that
several patterns of neural reactivity to threat and reward
mediate risk for impulsive behavior (i.e. stress-related
increases in alcohol consumption). Specifically, the authors
found that relatively high reactivity of the ventral striatum
(VS), which encompasses the nucleus accumbens, to reward
predicted increased stress-related alcohol consumption, but
only if participants showed relatively low amygdala reactivity
to threat.

Based on these data, Nikolova et al. (2011) propose a new
model highlighting interactions between the relative respon-
siveness of neural circuits to both reward and threat in mediat-
ing variability in behavior. Specifically, high amygdala
sensitivity to threat could buffer increased VS sensitivity to
rewards in the form of impulsive behaviors. The hippo-
campus, in contrast, is positioned to augment VS reactivity to
rewards by providing contextual cues, promoting the main-
tenance of goal-directed behavior (Grace 2000). Our data are
consistent with this model in that in the intermediate impul-
sivity group, the amygdala and nucleus accumbens are parti-
tioned into different modules, indicating relatively less FC
between these brain structures. Thus, the amygdala may have
less of an ability to provide threat-related information and act
as a “brake” on striatal drive for pursuing rewards. However,
since the hippocampus is also relatively separated from the
nucleus accumbens in the intermediate group, these individ-
uals may have less hippocampal augmentation of striatal
drive. Thus, the absence of an inhibitory signal from the
amygdala AND an excitatory signal from the hippocampus
may result in a net intermediate level of impulsivity in this
group. The partitioning of prefrontal regions and the nucleus
accumbens into the same module in this intermediate group
relative to the high group may further temper the expression
of impulsive behavior by allowing for increased capacity to
reevaluate behavioral strategies based on changing contingen-
cies. In contrast, patterns of FC in individuals falling in the
low group might lead to “over-regulation” of impulsive behav-
ior. Although this interpretation of the data remains speculat-
ive, it provides potentially testable hypotheses regarding the
mechanisms through which FC patterns are related to
impulsivity.

The principle finding from our analyses is the decreased
functional coupling between cortical control and subcortical
drive modules as a function of increasing impulsivity. Our
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secondary sliding window analysis of changes in FC density
across the continuum of impulsivity suggests that several pat-
terns converge to drive this principle finding. First, regions
within the cortical control module couple more tightly to-
gether as impulsivity increases. Secondly, the correlation
between the cortical control module and the visual module
becomes weaker. Thirdly, the correlation between the sensor-
imotor module and the subcortical drive module becomes
stronger. The overall result is that the links between the corti-
cal control and subcortical drive regions become relatively
more fragile, driving their separation into distinct modules as
impulsivity increases.

A primary function of brain regions such as the amygdala
and nucleus accumbens is to assign reinforcement value to
environmental stimuli (Weiskrantz 1956) and to influence
goal-directed behavior (Sesack and Grace 2010). Increased
functional coupling between the sensorimotor module and
the subcortical drive module encompassing these structures
may manifest as impulsive behavior since these brain areas
have increased access to environmental input (sensory
systems) and influence over behavioral output (motor
systems). Higher impulsivity was also associated with in-
creased functional coupling of regions within the cortical
control module. This finding may reflect greater effortful
control in more impulsive individuals necessary to achieve
task-related goals.

The mechanisms underlying the changes in connectivity
within regions of the visual module as well as between this
module and other modules reinforce the idea that the visual
cortex may play an important (albeit largely ignored) role in
disorders commonly associated with impulsivity, such as
ADHD (Castellanos and Proal 2011). Previous research
suggests that impulsivity is associated with augmented
event-related potentials to visual stimuli (Carrillo-De-La-Pena
and Barratt 1993), which may be related to the increased con-
nectivity within the visual module observed here. Our ana-
lyses also revealed decreased functional coupling between the

visual and the cortical control and subcortical drive modules
with increasing impulsivity. We speculate that this may reflect
less effective integration of perceptual information, appetitive
drive, and regulatory control. Similar “uncoupling” has been
observed in clinical populations characterized by increased
impulsivity (e.g. ADHD), in which there is increased distract-
ibility to sensory input and decreased FC between attentional
control regions and the visual system, resulting in enhanced
distraction by irrelevant visual input and difficulty sustaining
attention (Capotosto et al. 2009; Shulman et al. 2009).

It should be noted that weak FC density as observed in our
resting-state BOLD data may have at least 2 causes: (1) 2
regions truly interact less or (2) 2 regions engage in a more
variable interaction over time resulting in intermittent coup-
ling (Chang and Glover 2010; Smith et al. 2012). Resting-state
analyses of the kind where several minutes of activity are
averaged together into a single coupling parameter cannot
distinguish between these 2 possibilities. Thus, the decreased
FC between the visual and the cortical control and subcortical
drive modules is difficult to interpret. Studies employing sub-
stantially longer resting-state-fMRI scans are needed to allow
more fine-grained analysis of the temporal variability of
coupling.

Cognitive models of impulsivity suggest that internalizing
versus externalizing behaviors may reflect a breakdown
between different regulation processes (Eisenberg et al.
2001). Specifically, effortful cognitive control reflects execu-
tive inhibition processes, including attentional regulation.
Children displaying both internalizing and externalizing beha-
viors tend to be impaired on these cognitive control pro-
cesses, compared with well-adjusted children. These data are
consistent with the idea that those with intermediate levels of
trait impulsivity tend to be well-adjusted, whereas relatively
high “and” low impulsivity may be related to maladaptive be-
havior (Eisenberg et al. 2001).

While Eisenberg et al. (2001) found that children scoring
high and low on impulsivity showed less effortful control

Figure 3. (A) Group average matrix of inter-regional FC with module partitions reflecting those used in the sliding window analysis. (B–F) Scatterplots depicting FC density as a
function of impulsivity (z-score). Circles represent average FC density and impulsivity obtained from 20 subject windows of participants ordered along the impulsivity scale
(windows overlap by 10 subjects, resulting in 19 group samples across the spectrum of 200 subjects). Black circles represent the low, medium, and high impulsivity groups.
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than well-adjusted children, the most impulsive individuals
showed the least amount of effortful control overall. Develop-
mental studies suggest that impulsive behavior may result
from 2 separate processes—increased sensation seeking in
the form of pursuing rewards and reduced cognitive control
(Steinberg 2010). Moreover, these processes develop along
different trajectories, consistent with the idea that different
neural systems subserve these functions. Research shows that
performance on response inhibition tasks is associated with
age-related maturation of brain regions within the frontostria-
tal circuitry in both cross-sectional (Casey et al. 1997; Luna
et al. 2001; Bunge et al. 2002; Durston et al. 2002) and longi-
tudinal (Durston et al. 2006; Casey et al. 2011) samples. De-
velopmental studies have also shown that as response
inhibition improves with age, both structural connectivity
(Liston et al. 2006) and FC (Somerville et al. 2011) between
frontal and striatal brain areas mature. Clinical populations
characterized by highly impulsive behavior such as ADHD
also show abnormal frontostriatal recruitment during
response inhibition tasks (Vaidya et al. 1998; Durston et al.
2003).

Our study database allows us to compare the modular
organization of whole-brain networks in a large number of
individuals at the tail-ends of the impulsivity distribution,
which provides for reasonable comparison with the clinical
populations noted earlier. Nevertheless, it will be important
to determine the extent to which these patterns generalize, as
our study was limited by a sample with a restricted age range
of psychiatrically healthy individuals as well as individuals
who had mild psychopathology (without pharmacological
treatment), according to the current nosological framework
(Supplementary Table S1). In addition, future studies relating
the whole-brain network organization described here to task-
based fMRI studies of frontostriatal function will shed further
light on the mechanisms underlying impulsive behavior in
normal and abnormal populations. Such multimodal inte-
gration should inform how the general topology of whole-
brain networks at rest influences the specific, task-elicited
responses of behaviorally relevant functional circuits.

Another potential limitation of the current study is that we
acquired relatively short resting-state scans and did not collect
biological measures such as heart rate and respiration, which
may introduce noise into our analyses (Birn et al. 2009;
Chang et al. 2009). Given the short duration of our resting-
state scans, we did not implement “scrubbing” procedures
(Power et al. 2012) to censor high motion intensity fluctuation
spikes. However, we found no difference in head motion
across the 3 impulsivity groups (see Results). Future studies
acquiring longer scans, implementing scrubbing procedures,
and controlling for biological noise may allow more stable es-
timates of functional coupling as well as assessment of their
dynamic variation on shorter time scales.

In the present study, we defined our ROIs using the HOA,
but such anatomical atlases may be problematic since func-
tional boundaries do not directly correspond to tissue his-
tology. Future work using novel strategies to define ROIs
(Cohen et al. 2008; Wig et al. 2011) will allow for finer sensi-
tivity in delineating whole-brain network organization that
more directly corresponds to functional boundaries. Future
work should also include the application of additional local
and global metrics of network topology and the mapping of
whole-brain structural connections that shape FC. Mapping of

these structural connections may disclose the anatomical basis
of the observed functional effects and allow more direct infer-
ences on putative neural processing paths, whereas the analy-
sis of task-evoked neural activations will complement the
pattern of FC obtained in the resting state.

While theories of the biological substrates of personality
have focused on specific brain regions, neurotransmitters, or
neurobehavioral circuits, the present data raise the possibility
that more global network features may also underlie general
features of personality, including specific traits such as impul-
sivity that may reflect differences in information processing
styles (Humphreys and Revelle 1984). Critically, our current
approach complements existing research programs, which
have been largely focused on relationships between impulsiv-
ity and individual brain regions or discrete circuits. Such re-
search indicates that impulsivity is related to aberrant FC
within cortical control networks (Williams et al. 2006; Goya-
Maldonado et al. 2010; Shannon et al. 2011; Wolf et al. 2011)
as well as in mesocorticostriatal (Dalley et al. 2008) and corti-
colimbic (Liston et al. 2011) circuitries. The present data
extend these findings by providing a novel demonstration that
patterns of whole-brain network organization, which simul-
taneously models variability in these as well as many other
brain circuits, vary as a function of trait impulsivity. Moreover,
our results provide initial evidence that individuals reporting
high and low impulsivity show unique differences in func-
tional whole-brain network organization compared with indi-
viduals falling in the middle of the spectrum. These patterns
may usefully and uniquely inform ongoing efforts to identify
the shared and unique etiology of internalizing and externa-
lizing psychopathology, as well as to establish specific neural
mechanisms of risk associated with impulsivity that could
serve as novel treatment targets.

Supplementary Material
Supplementary material can be found at: http://www.cercor.oxford
journals.org/.
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