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Abstract
Background—Studies in schizophrenics have reported dopaminergic abnormalities in striatum,
substantia nigra, thalamus, anterior cingulate, hippocampus and cortex which have been related to
positive symptoms and cognitive impairments.

Methods—[18F]fallypride PET studies were performed in off medication or never medicated
schizophrenic subjects [N = 11, 6 M, 5 F; mean age of 30.5 ± 8.0 (S.D.); 4 drug naive] and age
matched healthy subjects [N = 11, 5M, 6F, mean age of 31.6 ± 9.2 (S.D.)] to examine dopamine
D2 receptor (DA D2r) levels in the caudate, putamen, ventral striatum, medial thalamus, posterior
thalamus, substantia nigra, amygdala, temporal cortex, anterior cingulate, and hippocampus.

Results—In schizophrenic subjects increased DA D2r levels were seen in the substantia nigra
bilaterally; decreased levels were seen in the left medial thalamus. Correlations of symptoms with
region of interest data demonstrated a significant correlation of disorganized thinking/nonparanoid
delusions with the right temporal cortex region of interest (r = 0.94, P = 0.0001) which remained
significant after correction for multiple comparisons (P<0.03). Correlations of symptoms with
parametric images of DA D2r levels revealed no significant clusters of correlations with negative
symptoms, but significant clusters of positive correlations of total positive symptoms, delusions and
bizarre behavior with the lateral and anterior temporal cortex, and hallucinations with the left ventral
striatum.
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Conclusions—The results of this study demonstrate abnormal DA D2r mediated
neurotransmission in the substantia nigra consistent with nigral dysfunction in schizophrenia and
suggest that both temporal cortical and ventral striatal DA D2r mediate positive symptoms.

Keywords
Dopamine D2 receptors; Schizophrenia; fallypride; substantia nigra; thalamus; delusions;
hallucinations

Abnormal dopaminergic neurotransmission has been implicated in the positive symptoms and
cognitive deficits seen in schizophrenia (1-5). Recent studies suggest abnormal function of
GABAergic/glutamatergic cortical microcircuits in schizophrenia resulting in dysfunction of
cortical pyramidal glutamatergic neurons (6) which provide a major excitatory afferent
projection to the substantia nigra (7). Dysfunction of this projection results in nigral dysfunction
and increased striatal DA release (8,9, and 10) which has been positively correlated with
positive symptoms (11). Prefrontal cortical glutamatergic afferents to the ventral tegmental
area (VTA) synapse directly on mesocortical DA neurons; it has been hypothesized that
dysfunction of this projection leads to decreased cortical DA release(12) which is believed to
be a factor in the cognitive impairments seen in schizophrenia(4). As dopamine D2 receptors
(DA D2r) directly modulate cortical GABAergic interneurons which modulate cortical
pyramidal neurons (13,14), ventral midbrain DA neurons (15,16), and DA release in striatal
and extrastriatal regions (17), DA D2r are of considerable interest in schizophrenia.

Consistent with the hypothesis of decreased cortical DA release in schizophrenia, post
mortem studies have reported decreased dopaminergic innervation in medial temporal cortex,
dorsolateral prefrontal cortex and hippocampus (18-20), and DOPAC levels in the anterior
cingulate (21). Some imaging studies of extrastriatal DA D2r in schizophrenic subjects have
reported decreased DA D2r levels in the anterior cingulate and temporal cortex, but most have
not (22-27); the most frequent finding is decreased medial thalamic DA D2r levels (24,25,
26). While there have been variable results, a recent study of DA D1r in schizophrenic subjects
reported increased frontal cortical levels which were negatively correlated with performance
on a working memory task (28-30), The increased DA D1r levels were interpreted as being
consistent with decreased frontal cortical DA levels. Post mortem studies of dopaminergic
function in the the substantia nigra in schizophrenic subjects have reported increased levels of
tyrosine hydroxylase (31), tyrosine hydroxylase mRNA (32), homovanillic acid (31), and DA
D2r (33) consistent with nigral dysfunction. Imaging studies have largely failed to examine
substantia nigra DA D2r. Both post mortem and imaging studies have reported increased striatal
DA synthesis, DA levels, and DA release which has been correlated with positive symptoms
(34-41). In contrast to post mortem studies which have reported increased striatal DA D2r levels
(42,43), most imaging but not all studies of striatal DA D2r have reported unaltered levels in
schizophrenia (44,45,46). However, one imaging study of striatal DA D2r performed before
and after DA depletion with alphamethylparatyrosine demonstrated normal levels prior to DA
depletion but increased DA D2r levels after depletion consistent with both increased striatal
DA release and increased total DA D2r levels(36). The discrepancy between post mortem
studies and imaging studies with benzamide radioligands may be due to the occupancy of
striatal DA D2r by increased levels of extracellular DA. Overall, the available post mortem and
imaging data are consistent with the hypothesis of decreased cortical DA release, nigral DA
neuronal dysfunction and increased striatal DA release in schizophrenia.

Previous imaging studies of DA D2r in medication free schizophrenic subjects have evaluated
either striatal or extrastriatal DA D2r levels (22-27,44,45). In the current study, positron
emission tomography (PET) with [18F]fallypride was utilized. [18F]Fallypride is a very high
affinity, specific benzamide PET radioligand for the DA D2 receptor (KD = 0.03nM) and is

Kessler et al. Page 2

Biol Psychiatry. Author manuscript; available in PMC 2010 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the only currently available radioligand which allows estimation of both striatal and
extrastriatal DA D2r levels (22,24,27,44-48). Given the hypothesis of nigral dysfunction in
schizophrenia(1,8-10,12), the lack of previous imaging studies of the substantia nigra DA
D2r, post mortem findings consistent with nigral dysfunction(31-33), and the ability of PET
[18F]fallypride studies to estimate nigral DA D2r levels(48,49), we specifically examined this
region. Other regions previously reported to have altered DA D2r levels, the anterior cingulate,
temporal cortex, and medial thalamus(22-26), were examined. As significant correlations of
symptoms with regional DA D2r levels have been reported (22-27), correlations of positive
and negative symptoms with regional DA D2r levels were assessed.

Methods
Subjects

This study was conducted under protocols approved by the Vanderbilt University and
Centerstone Mental Health Center Institutional Review Boards. All subjects were judged
capable of giving informed consent by a senior research psychiatrist, and provided informed
consent for this study. Subjects meeting the DSM IV criteria (American Psychiatric
Association, 1994), and Research Diagnostic Criteria (50) for the diagnosis of schizophrenia
between the ages of 18 and 45 were recruited. The diagnosis of schizophrenia was established
by the Structured Clinical Interview for DSM IV Axis I disorders (51) and checklist.
Schizophrenic subjects [N = 11, 6 M, 5 F; mean age of 30.5 ± 8.0 (S.D.) years and age range
of 20–45 years] were either never treated (N=4) or were off medication for at least three weeks
(Table 1). The BPRS (6 item scales), SAPS and SANS were administered to each subject;
mean total BPRS, SAPS and SANS scores were 28.8 ± 7.0 (S.D.), 9.8 ± 3.1 (S.D.), and 9.4 ±
4.0(S.D.) respectively. Age matched healthy subjects [N = 11, 5M, 6F, mean age of 31.6 ± 9.2
(S.D.) years and age range of 21 -45 years] were recruited as well. Significant medical
conditions, and previous or current substance abuse were exclusion criteria for all subjects.

Data Acquisition and Analysis
MRI scans of the brain were performed using a G.E. 1.5T Signa LXi MRI scanner. High
resolution T1-weighted gradient echo acquisitions in the sagittal plane (1.2 -1.3 mm thick
slices) and coronal planes (1.4–1.5 mm thick slices), axial spin density weighted and T2-
weighted (3 mm thick slices) acquisitions were obtained. PET scans were performed using a
GE Advance PET scanner in the 3-D acquisition mode. [18F]Fallypride (4–5 mCi, specific
activity >2,000 Ci/mmol, maximum mass dose of less than 2.5 nanomoles) was injected
intravenously over a 20 second period; serial scans of increasing duration were obtained for
210 minutes, allowing stable estimates of binding potentials in all regions (47-49). A measured
attenuation correction was utilized.

Serial PET scans were coregistered to each other and to thin section T1 weighted MRI images
using a rigid body, mutual information algorithm (52,53), and reoriented to the ACPC line.
Regions of interest were identified on thin section T1 weighted MRI images, and transferred
to coregistered PET studies. The putamen, and caudate were manually drawn by a
neuroradiologist (RMK) on axial slices from 2 to 12 mm above the ACPC line. The ventral
striatum was defined using the criteria of Mawlawi (54). Sobel filtering was performed on high
resolution gradient echo MRI images of the brain (55), but did not provide reliable boundaries
for delineation of the dorsomedial thalamus and pulvinar. We used anatomic landmarks to
delineate the medial thalamus and posterior thalamus, which approximated the boundaries of
the dorsomedial thalamus and pulvinar (56). The medial thalamus was delineated on slices
from 2 to 12 above the ACPC line; the posterior border was the coronal plane of the posterior
commissure, the medial border the midline, the anterior boundary the foramen of Monro and
the lateral border extended up to 1 cm from the midline. The anterior border of the posterior
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thalamus was the coronal plane of the posterior commissure, the medial and posterior borders
the edge of the thalamus as it projects into the quadrigeminal plate cistern, and the lateral border
the posterior limb of the internal capsule. The substantia nigra/VTA is located in the ventral
midbrain 9-14 mm below the ACPC line (56) and can be readily visualized in the midbrain on
PET [18F]fallypride scans (57). Substantia nigra regions of interest were manually drawn to
adjust for inter-individual variability by a neuroradiologist (RMK); the intersubject coefficient
of variation for the substantia nigra region was 8.7 % (57). The amygdala can be visualized in
the on MRI scans just anterior to the tip of the temporal horn of the lateral ventricle and deep
to the uncus (57); the amygdala is located 6 to 20 mm below the ACPC line, 12 to 28 mm
lateral to the midline, and from 2 to 12 mm behind the plane of the anterior commissure (56).
To decrease partial voluming from the striatum, amygdala regions of interest were drawn on
MRI images from 10 to 16 mm below the plane of the ACPC. Temporal cortical regions of
interest were manually drawn on axial MRI images from 35 to 25 mm below the ACPC. Our
previous studies have shown excellent inter-subject reliability for these regions of interest, i.e.
inter-subject coefficients of variation of 6.8 to 15.9 percent (57). The anterior cingulate was
delineated as extending from superior to the axial plane through the ACPC in the pregenual
region superiorly and posteriorly to the coronal plane through the anterior commissure. The
hippocampus was manually delineated on the coronal MRI images from the tip of the temporal
horn anteriorly to the last coronal slice in which it would be reliably identified posteriorly.
Regional DA D2r levels were estimated using the reference region method with a cerebellar
reference region (58). The cerebellum is an appropriate reference region as less than 3 percent
of cerebellar uptake is specific binding to DA D2 receptors and reference region method
estimates of binding potentials are highly correlated (r>0.99) with modeled estimates using a
metabolite corrected plasma input function (47,59-61). Parametric images of DA D2r were
coregistered across subjects using an elastic deformation algorithm (62).

Statistical Analysis
Region of interest data were analyzed using a repeated measures MANOVA with region and
hemisphere as within subject factors, and group (schizophrenic, healthy control) as a between
subject factor with age as a covariate. Definition of the hippocampal region of interest was
problematic in one subject, and this subject was left out of the analysis. When the MANOVA
was performed with this subject but without the hippocampus as a region, no conclusion was
changed. Because age has a significant effect on DA D2r levels, independent group two-tailed
t-tests covaried for age were used to test for group differences in regional binding potentials.
To evaluate positive symptoms, the total SAPS scores, and global SAPS scores for
hallucinations, delusions and bizarre behavior as well the BPRS positive symptom score, and
BPRS scores for suspiciousness (Item 11), hallucinations (Item 12), and disorganized thinking/
nonparanoid delusions (Item 15) were measured. Negative symptoms were examined using
the SANS. Correlations of symptom scores with regions of interest were performed using a
Pearson product moment correlation and significance evaluated using a two-tailed t-test.
Bonferroni correction was used to correct for multiple comparisons. Correlations of symptom
scores with parametric DA D2r images were calculated on a voxel basis using a Pearson product
moment correlation and significance evaluated using a two-tailed t-test. To assess the
significance of clusters of significant correlations, corrections for multiple comparisons were
made using the method of Forman as implemented in the AFNI program (63). The critical
threshold for the voxelwise analysis was P<0.01 and a minimum cluster size of 24 voxels.
These clusters were significant at P<0.001 corrected for multiple comparisons.

Results
A repeated measures MANOVA was performed with region and hemisphere as within subject
factors, group (schizophrenic, healthy control) as a between subject factors, and with age as a
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covariate. No significant main effect of hemisphere, no group × hemisphere interaction, or
group × hemisphere × region interaction was seen. There was a significant effect of region, F
(7,13) = 36,78, p<0.00001, reflecting the large differences in regional binding potentials (Table
2). There was no main effect of group. However, there was a significant region × group
interaction, F(7,13) = 6.00, p<0.005. There was also a region × age interaction, F(7,13) = 4.60,
p<0.010 reflecting decreases in regional binding potentials with age which were greater for
cortical than subcortical regions. To explore the regions responsible for the significant region
× group interaction, independent group two tailed t-tests covaried for age were performed to
examine which region(s) might account for this interaction. These tests demonstrated
significantly increased DA D2r levels in the substantia nigra/VTA bilaterally and decreased
levels in the left medial thalamus (Table 2). No other region of interest demonstrated a
significant difference in DA D2r levels between schizophrenic and healthy subjects.

Correlation of region of interest data with SAPS scores, SANS scores, BPRS positive symptom
score, and BPRS scores for suspiciousness (Item 11), hallucinations (Item 12), and
disorganized thinking/nonparanoid delusions (Item 15) demonstrated one correlation which
survived Bonferroni correction and a second trend level correlation. DA D2r levels in the right
temporal cortex region of interest were positively correlated with the BPRS score for
disorganized thinking/nonparanoid delusions, r = 0.94, P = 0.0001 uncorrected for multiple
comparisons, P<0.03 after correction for multiple comparisons. The left temporal cortical
region of interest demonstrated a trend level correlation with the BPRS score for disorganized
thinking/nonparanoid delusions after corrections for multiple comparisons, r = 0.92, P =
0.0003, uncorrected for multiple comparisons, P<0.08, corrected for multiple comparisons.

Correlations of symptoms with regional DA D2r levels performed using voxelwise analysis
revealed no significant clusters of correlations of regional DA D2r levels with either the total
SANS score or individual SANS scores Significant clusters of highly positive correlations of
regional DA D2r levels were seen with the total SAPS score, and global SAPS scores for
delusions, hallucinations and bizarre behavior. Two clusters of highly positive correlations
(146 voxels on the right, mean r =0.85; 131 voxels on the left, mean r=0.86) were seen with
total SAPS scores; these clusters involved the posterior portions of the inferior, middle and
superior temporal gyri and extended superiorly into the supramarginal gyrus of the parietal
lobe in both cerebral hemispheres (Figure 1). Significant clusters of correlations of SAPS global
delusions scores with DA D2 r levels was seen in the lateral aspects of the right and left anterior
temporal cortex extending into the temporal tips laterally (50 voxels on the right, mean r=0.84;
80 voxels on the left, mean r=0.86) (Figure 2). Similarly, correlations of the BPRS score for
disorganized thinking/nonparanoid delusions (Item 15) with DA D2 receptor levels
demonstrated a similar cluster of positive correlations in the left anterior temporal cortex (80
voxels, mean r = 0.85). The SAPS global bizarre behavior scores demonstrated bilateral clusters
of positive correlations (184 voxels on the right, mean r=0.85; 179 voxels on the left, mean
r=0.84). The cluster on the left involved the posterior portions of the inferior and superior
temporal gyri as well the mid to posterior portions of the middle temporal gyrus with extension
into the inferior parietal lobule. The cluster on the right also involved the inferior, middle, and
superior temporal gyri and inferior parietal lobule; it extended further anteriorly in the sulcus
between the superior and middle temporal gyrus, but had less extension into the posterior
superior temporal gyrus and inferior parietal lobule than the cluster on the left (Figure 3). In
contrast, the SAPS global scores for hallucinations demonstrated positive correlations with the
left ventral striatum (31 voxels, mean r = 0.84) but not with cortical regions (Figure 4). BPRS
scores for hallucinations demonstrated a similar left ventral striatal cluster of positive
correlations (41 voxels, mean r = 0.87).
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Discussion
The results of this study indicate that there are increased DA D2r levels in the substantia nigra/
VTA and decreased DA D2r levels in the left medial thalamus. The increased levels of nigral/
VTA DA D2r seen in the current study are consistent with the one post mortem study of nigral
DA D2r in schizophrenics which also reported increased levels (33). DA D2r in the substantia
nigra are largely inhibitory autoreceptors on nigral DA neurons (15,16). As discussed above,
post mortem studies have also reported increased nigral levels of tyrosine hydroxylase, tyrosine
hydroxylase mRNA, and homovanillic acid (31,32) in the substantia nigra of schizophrenic
subjects. The findings in both the current study and previous post mortem studies demonstrate
both increased inhibitory nigral DA D2 autoreceptor levels and increased DA synthesis and
release suggesting dysregulation of midbrain dopaminergic neurons in schizophrenic subjects.
Similar findings, i.e. increased total DA D2r levels and increased DA synthesis and release
(34-43), have been reported in the striatum of schizophrenic subjects and suggest that similar
dysregulation of dopaminergic neurotransmission occurs in both nigra and striatum. The factor
(s) responsible for increased nigral and striatal DA D2r levels when increased extracellular DA
levels are preset are unclear.

The VTA, dorsal tier of the zona compacta of the substantia nigra and retrorubal fields provide
dopaminergic innervation to limbic and cortical regions and so are of considerable interest in
schizophrenia (64,65). The resolution of the PET scanner used in this study is insufficient to
distinguish changes in these areas from the ventral tier of the zona compacta which provides
dopaminergic innervation to the striatum. While the PET scanner used in this study does not
have sufficient resolution to provide complete quantitative recovery of DA D2r levels in the
substantia nigra, published calculated estimates of quantitative recovery for the substantia nigra
indicate that the the 5-6 mm resolution of the scanner does allow substantial recovery of
quantitation (66). Consistent with these calculations are studies which indicate the ability of
the scanner used to estimate SN DA D2r occupancies by a number of antipsychotic drugs as
well as the changes in apparent SN DA D2r levels following DA release and DA depletion
(49,57,59,67). There has been one recent [123I]epidepride SPECT study which has reported
decreased levels of midbrain uptake in schizophrenic subjects (68). The low resolution of
SPECT relative to the size of the substantia nigra does not allow separation of nigral DA D2r
from those in other structures. In addition, the lack of a scatter correction, the use of a ratio
method using cerebellum as a reference region prior to the attainment of a transient equilibrium,
and the variability in this ratio due to lipophilic metabolites of [123I]epidepride in the
cerebellum makes interpretation of these results difficult (69-71).

The results of this study confirm the previously reported finding of decreased left medial
thalamic DA D2 receptor levels in schizophrenic subjects (24-26). An autoradiographic study
of human thalamic DA D2r has reported a heterogenous and nuclear specific distribution of
DA D2r with highest levels in the midline and intralaminar nuclei of the thalamus; levels in
the dorsomedial nucleus were at least two fold lower than in the midline and intralaminar nuclei
(72). While the dorsomedial nucleus accounts for most of the medial thalamic region of interest,
the midline and intralaminar nuclei are included in this region of interest. As a number of
cognitive functions and behaviors which are impaired in schizophrenia are mediated by
prefrontal cortical/basal ganglia/ medial thalamic circuits (73), a loss of DA D2r in the
dorsomedial nucleus of the thalamus may contribute to these impairments. The thalamic
intralaminar nuclei project to frontal cortex, striatum and limbic regions providing feedback
from the thalamus to these regions (74,75); this feedback is affected by DA D2r in these nuclei
providing an additional site for modulation of prefrontal cortical/basal ganglia/ medial thalamic
circuit function. The apparent reduction in medial thalamic DA D2r levels may reflect loss of
medial thalamic neurons expressing DA D2r consistent with imaging and post mortem studies
reporting decreased medial thalamic volume and neuronal numbers (55,76-79), a loss of
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autoreceptors on medial thalamic dopaminergic projections, or an increase in thalamic DA
release (80). However, increases in thalamic DA release are unlikely to cause the decrease in
apparent left medial thalamic DA D2 receptor levels as d-amphetamine administration
produces only a 3% decline in medial thalamic [18F]fallypride binding potentials in humans
(57).

The current results suggest that different positive symptoms are mediated by DA D2r in
different regions. Scores for delusions and bizarre behavior are positively correlated with
anterior temporal/temporal tip, and lateral temporal/inferior parietal cortical DA D2r,
respectively, while hallucinations are positively correlated with left ventral striatal but not
cortical DA D2r. Consistent with these correlations are cerebral blood flow studies in
schizophrenic subjects which found positive correlations of left ventral striatal and left
temporal tip blood flow in schizophrenic subjects with a reality distortion factor principally
related to hallucinations and delusions.(81). A comprehensive review of neurophathological
lesions producing schizophrenic symptoms reported an association of striatal lesions with
auditory hallucinations, whereas left temporal lobe lesions were associated with delusions
(82). The differences in regional correlations for hallucinations and delusions raise the
possibility that hallucinations and delusions may be differentially affected by antipsychotic
drugs which produce preferential occupancy of temporal cortical versus striatal DA D2r (60,
67,83,84). The lack of significant clusters of correlations with negative symptoms suggests
that these symptoms may not be mediated by DA D2r neurotransmission.

The positive correlations of positive symptoms with cortical DA D2r levels are similar to a
recent [123I]epidepride SPECT study which reported a positive correlation of positive
symptoms with frontal cortical DA D2r levels in males but not females(27). In subjects with
bipolar disorder psychosis has been correlated with increased striatal DA D2r (85) consistent
with the results of the current study. Although previous studies, (23-26) have reported negative
correlations of medial, lateral and/or total thalamic DA D2 receptor levels with positive
symptoms as measured by the BPRS or with the PANSS general psychopathological scores,
no significant correlations of symptom scores with medial thalamic regions of interest were
seen.

There a number of potential limitations in this study. These include the small number of subjects
studied and the fact that seven of the eleven subjects studied had received previous neuroleptic
treatment. While the number of schizophrenic subjects examined in the current study is similar
to other PET studies of extrastriatal DA D2r which have studied 7 to 15 subjects, a larger cohort
may provide more reliable estimates of DA D2r levels in schizophrenia (22-26). The largest
study of extrastriatal DA D2r in unmedicated schizophrenics, a SPECT study of 25 subjects,
did not evaluate the regions found to be abnormal in the current study (27). As increased,
decreased, and unchanged levels of DA D2r are seen in the current study, it is unlikely that the
increased levels seen reflect receptor upregulation due to previous therapy or the decreased
levels residual antipsychotic drug effects. Although subjects were not carefully matched for
smoking status, it is unlikely that the current results were affected by smoking status as
extrastriatal DA D2r levels are not affected by smoking status (86). While females were not
carefully matched for menstrual status, one study of the effect of menstrual status on DA D2r
levels in humans (86) found no statistically significant effect while a second, older study (87)
reported a small effect but no statistical significance was reported; the effect, if any, is small.
Finally, extracellular DA levels may be altered in schizophrenia and affect the apparent levels
of DA D2r as [18F]fallypride has been shown to be sensitive to extracellular DA levels (49,
57).

In conclusion, the results of this study demonstrate increased substantia nigra and decreased
left medial thalamic DA D2r levels in off medication schizophrenic subjects. Positive
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correlations of positive symptoms with temporal cortical and left ventral striatal striatal DA
D2r levels were found. The increased substantia nigra DA D2r levels are consistent with the
hypothesized nigral dysfunction in schizophrenia. The positive correlations of hallucinations
with ventral striatal DA D2r levels, and delusions and bizarre behavior with temporal cortical
receptor levels provides additional evidence for the role of DA D2r mediated neurotransmission
in these key psychotic symptoms, and suggests that these symptoms may be mediated by DA
D2r in different brain regions.
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Figure 1.
Sagittal (A,B), axial (C), and coronal (D) images through significant clusters of correlations
of total SAPS scores with regional DA D2r levels. Two significant clusters are seen involving
the posterior portions of the inferior, middle and superior temporal gyri with extension
superiorly into the supramarginal gyrus of the parietal lobe in both cerebral hemispheres. The
cluster on the right (146 voxels, mean r =0.85) was similar in size to the cluster on the left (131
voxels, mean r=0.86)
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Figure 2.
Two significant clusters of correlations of the SAPS global score for delusions with DA D2r
levels are seen in the right and left anterolateral temporal cortex extending into the temporal
tips. The cluster on the left (80 voxels on the left, mean r=0.86) is larger than the cluster on
the right (50 voxels on the right, mean r=0.84).
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Figure 3.
Sagittal left (A) and right (B), axial (C), and coronal (D) images through significant clusters
of correlations of SAPS global scores for bizarre behavior with regional DA D2r levels. Two
significant clusters of highly positive correlations (184 voxels on the right, mean r=0.85; 179
voxels on the left, mean r=0.84) involve the mid to posterior lateral aspects of the temporal
lobes with extension into the inferior parietal lobule
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Figure 4.
A significant cluster of correlations (31 voxels, mean r = 0.84) of the SAPS global score for
hallucinations with DA D2r levels is seen in the left ventral striatum. No other significant
clusters of correlations were seen.
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